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ABSTRACT

Many applications call for techniques for representing and reasoning about prefer-

ences, i.e., relative desirability over a set of alternatives. Preferences over the alternatives

are typically derived from preferences with respect to the various attributes of the al-

ternatives (e.g., a student’s preference for one course over another may be influenced by

his preference for the topic, the time of the day when the course is offered, etc.). Such

preferences are often qualitative and conditional. When the alternatives are expressed

as tuples of valuations of the relevant attributes, preferences between alternatives can

often be expressed in the form of (a) preferences over the values of each attribute, and

(b) relative importance of certain attributes over others. An important problem in rea-

soning with multi-attribute qualitative preferences is dominance testing, i.e., to find if

one alternative (assignment to all attributes) is preferred over another. This problem is

hard (PSPACE-complete) in general for well known qualitative conditional preference

languages such as TCP-nets.

We provide two practical approaches to dominance testing. First, we study a re-

stricted unconditional preference language, and provide a dominance relation that can

be computed in polynomial time by evaluating the satisfiability of an appropriately con-

structed logic formula. Second, we show how to reduce dominance testing for TCP-nets

to reachability analysis in an induced preference graph. We provide an encoding of TCP-

nets in the form of a Kripke structure for CTL. We show how to compute dominance

using NuSMV, a model checker for CTL.

We address the problem of identifying a preferred outcome in a setting where the
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outcomes or alternatives to be compared are composite in nature (i.e., collections of com-

ponents that satisfy certain functional requirements). We define a dominance relation

that allows us to compare collections of objects in terms of preferences over attributes of

the objects that make up the collection, and show that the dominance relation is a strict

partial order under certain conditions. We provide algorithms that use this dominance

relation to identify only (sound), all (complete), or at least one (weakly complete) of the

most preferred collections. We establish some key properties of the dominance relation

and analyze the quality of solutions produced by the algorithms. We present results

of simulation experiments aimed at comparing the algorithms, and report interesting

conjectures and results that were derived from our analysis.

Finally, we show how the above formalism and algorithms can be used in preference-

based service composition, substitution, and adaptation.
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CHAPTER 1. Introduction

Many applications call for techniques for representing and reasoning about pref-

erences over a set of alternatives or outcomes. Such preferences may be qualitative

or quantitative. Qualitative preferences are expressed in the form of binary relations

(preference structures) on the set of alternatives, whereas quantitative preferences are

expressed in the form of real valued functions on the set of alternatives.

Much of the work on decision theory has focused on reasoning with quantitative

preferences [Fishburn, 1970, Keeney and Raiffa, 1993]. Value theory provides tools for

encoding quantitative preferences using a value function, which assigns a value to each

alternative. If v is a value function on the set {A,B,C} of alternatives, then A is said

to be preferred to B if and only if v(A) > v(B). Utility functions have further been

developed as an extension of value functions to deal with settings where the outcomes

are uncertain (e.g., by incorporating a probability distribution over the set of outcomes).

However, in many settings quantitative preferences may not exist, or it may be more

natural to express preferences in qualitative terms [Doyle and Thomason, 1999]. Hence,

there is a growing interest on formalisms for representing and reasoning with qualitative

preferences [Brafman and Domshlak, 2009] in AI.

An important problem in this context has to do with representing qualitative prefer-

ences over a set of alternatives, and reasoning with them to identify the most preferred

ones. Typically, the alternatives are described by a set of attributes, and preferences

over the alternatives are expressed with respect to their attributes. Representing and

reasoning with preferences over multiple attributes is complicated by the fact that there
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is an exponential increase in the number of possible outcomes over which preferences

have to be specified. This brings the need for formalisms that compactly represent such

preferences, and algorithms that reason with them.

Brafman’s seminal work [Brafman et al., 2006] attempts to address this need by

introducing preference networks, which are graphical formalisms for compactly encoding

preferences over multiple attributes in the form of: (a) intra-variable or intra-attribute

preferences specifying preferences over the domains of each of the attributes; (b) the

relative importance among the attributes. They can capture conditional preferences, i.e.,

preferences that arise in settings where the preferences over the values of an attribute is

dependent on the assignment to one or more other attributes. Preference networks use

a graphical representation scheme to encode the above types of preferences, and employ

the ceteris paribus1 semantics to reason about the most preferred alternatives. Two

of the well studied formalisms in this family are the conditional preference networks

(CP-nets) that capture intra-attribute preferences, and tradeoff-enhanced conditional

preference networks (TCP-nets) that capture intra-attribute preferences and relative

importance over the attributes.

Against the above background, this thesis makes contributions in three related topics:

1. Dominance testing: Determining whether an outcome is preferred to another

with respect to a set of preferences specified by a TCP-net is computationally hard.

This thesis provides formal methods for performing dominance testing efficiently

in many practical cases.

2. Preference Reasoning for Compositional Systems: In many AI applica-

tions such as planning and scheduling, the alternatives over which preferences are

computed represent collections of objects rather than simple objects. This thesis

develops formalisms to reason with preferences over collections of objects based

1A Latin term for ‘all else being equal’
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on the preferences over the attributes of the objects that make up the collections,

and provides algorithms to compute the most preferred collections.

3. Application to Web Services: The service oriented computing paradigm offers

a powerful approach for software development, where independently developed

distributed software components called Web services are assembled together to

build more complex applications or compositions. This thesis provides algorithms

for automatically identifying, repairing and adapting compositions satisfying a

given requirement that are also most preferred with respect to the preferences over

the set of attributes.

1.1 Contributions

We describe the specific research challenges, objectives and the contributions made

in this thesis in relation to the above topics in Sections 1.1.1, 1.1.2 and 1.1.3 respectively.

1.1.1 Dominance Testing

A problem of fundamental importance in reasoning with qualitative preferences over

multiple attributes is dominance testing. Dominance testing is the problem of deter-

mining whether an outcome (an assignment to all the attributes) is preferred to another

with respect to a given set of preferences. In languages such as CP-nets and TCP-nets,

testing whether an outcome α is preferred to another outcome β with respect to a set

of preferences is equivalent to finding a path in the graph of all possible outcomes from

α to β [Brafman et al., 2006].

Polynomial algorithms exist for very special cases of CP-nets (such as when the

dependencies of the attributes in a CP-net form a tree structure [Boutilier et al., 2004]).
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However, the problem in the general case is hard (PSPACE-complete, [Goldsmith et al.,

2008]). Hence, there is a need for practical algorithms for dominance testing.

Experience with other hard problems such as boolean satisfiability (SAT) suggests

that many instances of the hard problem may be easily solvable. Specialized data struc-

tures and algorithms have thus been developed to obtain practically useful tools (i.e.,

SAT solvers).

The first main contribution of this thesis is to address the practical need for efficient

dominance testing methods for preference languages such as CP-nets and TCP-nets. In

particular, we (a) study a restricted preference language for which dominance testing is

polynomial time solvable; and (b) employ the state-of-the-art tools in formal methods to

make the search for a proof of dominance efficient. This allows us to leverage continuing

advances in model checking for more efficient preference reasoning.

1.1.2 Preference Reasoning for Compositional Systems

In many AI applications such as planning and scheduling, the alternatives over which

preferences are computed have a composite structure, i.e., an alternative represents a

collection or a composition of objects rather than simple objects. In such settings,

typically there are a set of user specified functional requirements that compositions are

required to satisfy2. Among all the possible compositions that do satisfy the functional

requirements, there is often a need to choose compositions that are most preferred with

respect to a set of user preferences. In particular, we are interested in the setting where

the user preferences are specified with respect to a set of non-functional attributes of

the objects that make up the composition. We illustrate the above problem using the

following example.

Consider the task of designing a program of study (POS) for a Masters student in the

2For example, in planning, a valid plan is a collection of actions that satisfies the goal; and in
scheduling, a valid schedule is a collection of task-to-resource assignments that respects the precedence
constraints.
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Computer Science department. The POS consists of a collection of courses chosen from a

given repository of available courses spanning across different areas of focus in computer

science. Apart from the area of focus, each course also has an assigned instructor and

a number of credit hours. A repository of available courses, their areas of focus, their

instructors and the number of credit hours are specified in Table 1.1.

Course Area Instructor Credits
CS501 Formal Methods (FM) Tom 4
CS502 Artificial Intelligence (AI) Gopal 3
CS503 Formal Methods (FM) Harry 2
CS504 Artificial Intelligence (AI) White 3
CS505 Databases (DB) Bob 4
CS506 Networks (NW) Bob 2
CS507 Computer Architecture (CA) White 3
CS508 Software Engineering (SE) Tom 2
CS509 Theory (TH) Jane 3
CS510 Theory (TH) Tom 3

Table 1.1 List of courses the student can choose from

In this example, each POS can be viewed as a composition of courses. The require-

ments for an acceptable Masters POS (i.e., a feasible composition) are as follows.

• The POS should include at least 15 credits

• The POS should include the two core courses CS509 and CS510

• There should be courses covering at least two breadth areas of study (apart from

the area of Theory (TH))

Given the repository of courses (Table 1.1), there may be one or more acceptable

programs of study (i.e., feasible compositions). For example:

• P1 = CS501⊕ CS502⊕ CS503⊕ CS504⊕ CS509⊕ CS510

• P2 = CS501⊕ CS502⊕ CS505⊕ CS506⊕ CS509⊕ CS510
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FM TH

AI

DB NW

SE CA
(a) ≻A

Jane

GopalBob

White Harry

Tom

(b) ≻I

Figure 1.1 Intra-attribute preferences for Area (≻A) and Instructor (≻I).

• P3 = CS503⊕ CS504⊕ CS507⊕ CS508⊕ CS509⊕ CS510

Suppose that in addition to the above requirements, a student has some preferences

over the course attributes such as the area of focus, the choice of instructors and difficulty

level in terms of credit hours. Among several acceptable programs of study, the student

may be interested in those programs of study that: (a) satisfy the minimum requirements

(see above) for an acceptable POS, and (b) those that are most preferred with respect

to his/her preferences specified above. The preferences of a student with respect to the

course attributes Area (A) and Instructor (I) are illustrated in Figure 1.1. In addition

let us say that the student prefers the POS that have lesser total number of credits (this

specifies ≻C). Further, let the relative importance among the attributes A, I and C be

I �A�C3, i.e., I is relatively more important than A, which is in turn relatively more

important than C. Such preferences can be represented using TCP-nets.

The problems that we try to address in our research, given such a compositional

system are:

• Given two programs of study, namely Pi and Pj , determine whether Pi≻d Pj or

vice versa with respect to the student’s preferences;

• Given a repository of courses and an algorithm for computing a set of acceptable

3We will use these preferences as a running example.
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programs of study, find the most preferred, acceptable programs of study with

respect to the above dominance relation.

In this example, the functional requirements correspond to the three conditions4, all

of which must be satisfied for a collection of courses to be an acceptable POS. Area

(A), instructor (I) and number of credits (C) constitute the non-functional attributes,

and the user preferences over these attributes are given by {≻A,≻I ,≻C} and I�A�C.

One can envision similar problems in several other applications, ranging from assembling

hardware and software components in an embedded system (such as designing a pace-

maker or anti-lock braking system) to putting together a complex piece of legislation

(such as the one for reforming health care).

In general, we are interested in the problem of (a) reasoning about preferences over

compositions of objects, given the preferences over a set of non-functional attributes

describing the objects; and (b) identifying compositions that satisfy the functional re-

quirements of the compositional system, and at the same time are optimal with respect

to the stated preferences over the non-functional attributes.

Although there are existing preference formalisms [Boutilier et al., 2004, Brafman

et al., 2006] for computing dominance over a simple set of alternatives (given a set of

multi-attribute preferences), they are inadequate when it comes to computing domi-

nance over a set of alternatives that are themselves composite in nature, as is the case in

compositional systems. This is because when dealing with composite alternatives (i.e.,

compositions), the preference valuation of an alternative or composition is a function of

the preference valuations of components that make up the composition. For instance,

in the above example, whether one program of study is be preferred to another (with

respect to the user specified preferences) or not depends on the subject area, instruc-

tors and credit hours of the individual courses that make up the respective programs

4A POS must have a minimum of 15 credits; must include the two core courses; and must include
courses from at least two breadth areas apart from Theory
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of study. Hence, there is a need for developing a preference formalism that provides

methods for (a) reasoning about preferences over compositions given user preferences

over attributes of the components that make up the compositions; and (b) identifying

preferred compositions that satisfy the given functional requirement with respect to user

preferences in a compositional system.

We aim to develop a formalism for representing and reasoning with intra-attribute

and relative importance preferences over a set of attributes in compositional systems

that provides decision procedures for computing dominance over compositions. The

formalism should allow users flexibility to define how exactly the attributes of the com-

ponents in composition influence the overall preference valuation of the composition

itself in terms of each of the attributes, and how dominance between two compositions

is computed.

We also aim to develop a suite of algorithms for compositional systems that use

the above formalism to compare any two compositions; and produce a set of preferred

compositions that satisfy a given functional requirement. We also aim to experimentally

validate the performance of the developed algorithms, and to compare the algorithms

with respect to parameters of interest.

We present a preference formalism for compositional systems that allows users to

specify preferences in terms of intra-attribute and relative importance preferences over

a set of attributes. We also allow the user to provide a custom aggregation function that

computes the attributes of a composition in terms of the attributes of its components.

We introduce a new dominance relation that compares compositions in terms of their

attributes (computed using the user specified aggregation function) with respect to the

stated preferences. We analyze some of the key properties of this dominance relation.

We develop a suite of algorithms for compositional systems that identify the set, or

subset of the most preferred composition(s) with respect to the user preferences. For this

purpose, we assume the existence of a functional composition that guides the search for
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compositions that satisfy the given functional requirement. Based on the nature of the

functional composition algorithm, we develop various algorithms to identify preferred

compositions and compare them both theoretically and experimentally, in terms of the

quality of solutions they produce (number of most preferred solutions), and relative

performance of the algorithms in practice.

1.1.3 Application of Preference Reasoning for Compositional Systems: Web

services

In this thesis we demonstrate the application of preference reasoning techniques to the

development and maintenance of a class of software systems, namely service-oriented ar-

chitectures. Service-oriented computing [Bichler and Lin, 2006, Papazoglou, 2003, Huhns

and Singh, 2005] offers a powerful approach to assemble complex distributed applications

from independently developed software components in many application domains such

as e-Science, e-Business and e-Government. In a service oriented architecture, composite

Web services are assembled from atomic Web services such that the overall composite

service satisfies the functional and non-functional requirements of the user. Given a set

of functional/non-functional requirements and a repository of atomic services, the user

seeks a composite service assembled from the components in the repository that satisfies

the requirements.

In a service oriented architecture, functional requirements refer to the functional-

ity of the desired composite Web service (also called a goal service). Non-functional

requirements refer to aspects such as security, reliability, performance, and cost of the

goal service. For example, among the composite services that achieve the desired func-

tionality, a user might prefer a more secure service over a less secure one; or one with

a lower cost over one with a higher cost. As in other applications, such preferences

may be quantitative or qualitative. In many settings, a user might need to trade off one

non-functional attribute against another (e.g., performance against cost); In others, it
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might be useful to assign relative importance to different non-functional attributes (e.g.,

security being more important than performance).

Barring a few notable exceptions [Zeng et al., 2003, Zeng et al., 2004, Yu and Lin,

2005, Berbner et al., 2006], much of the work on service composition has focused on al-

gorithms for assembly of composite services from functional specifications. Some of the

major approaches to service composition based on functional specifications include: AI

planning [Pistore et al., 2005b, Traverso and Pistore, 2004, Sirin et al., 2004, Shaparau

et al., 2006], labeled transition systems [Pathak et al., 2006b, Pathak et al., 2007, Pathak

et al., 2008b], Petri nets [Hamadi and Benatallah, 2003], among others. (The interested

reader is referred to [Dustdar and Schreiner, 2005, Pathak et al., 2008a, Pistore et al.,

2005a] for surveys). Hence, there is an urgent need for principled methods that in-

corporate consideration of user-specified preferences with respect to the non-functional

attributes, and the relative importance of the different non-functional attributes of the

composite Web services.

Successful development and deployment of service oriented software applications re-

lies on effective solution of three inter-related problems: (a) service composition [Pathak

et al., 2007] - assembling a composite Web service (or service composition) from a set

of component services in a repository that satisfy the given functional requirements; (b)

substitution [Pathak et al., 2007] - identifying appropriate alternatives to replace failed

or unavailable component services in a service composition; and (c) adaptation [Chafle

et al., 2006, Pathak et al., 2006b] - altering existing composite Web services in response

to changes in the functional/non-functional requirements, and/or the repository of avail-

able component services.

Solutions to all the above challenges are critical to meeting key goals of a successful

service oriented architectures, namely that of supporting business agility and continuity.

Our objective is to develop a set of algorithms for service oriented architectures to

compose, substitute and adapt composite Web services with respect to user specified
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preferences over non-functional attributes of the Web services. We make use of the

preference formalism developed as part of our research in pursuance of the objectives of

Section 1.1.2.

In this research, we demonstrate the use of preference reasoning techniques and com-

position algorithms developed as part of Section 1.1.2 for the development and main-

tenance of composite Web services in service-oriented architectures. In addition, we

develop a heuristic search algorithm for identifying the most preferred Web service com-

positions when one or more of the non-functional attributes of some of the component

services in the repository are unknown. We also develop algorithms to address prob-

lems related to the lifecycle management of composite Web services in a service-oriented

environment, namely, identifying preferred substitutions and adaptations of compos-

ite services after identifying and deploying a composite Web service. In particular, we

develop different algorithms for dealing with substitution of components in a service

composition: (a) single-component substitution; and (b) multi-component substitution,

i.e., multiple components are replaced at once in a composite Web service. We also

develop two algorithms for adaptation, both of which have the anytime property, i.e.,

they are guaranteed to produce a sequence of increasingly preferred adaptations to a

composite service, given the revised user preferences and/or repository of components.

Although these algorithms are tailored to suit the needs of service-oriented architectures,

similar techniques can be applied in compositional systems other than Web services as

well, such as AI planning, team formation, etc.
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CHAPTER 2. Preliminaries

In this chapter, we will introduce some preliminary definitions and key concepts

related to qualitative preferences and compositional systems that will be used in the

rest of the thesis.

2.1 Properties of Binary Relations

We recall some basic properties and definitions concerning binary relations used in

this thesis (see [Fishburn, 1985] for a comprehensive treatment of the same). Let ≻ be

a binary relation on a set S, i.e., ≻⊆ S × S. We say that ≻ is an equivalence (eq), a

(strict) partial order (po), an interval order (io), a weak order (wo) or a total order (to),

as defined in Table 2.1.

A total order is also a weak order; a weak order is also an interval order; and an

interval order is also a strict partial order.

2.2 Qualitative Preferences

The problem we are interested in this research has to do with representing qualitative

preferences over multiple attributes and reasoning with them to find the most preferred

among a set of alternatives. Qualitative preferences over a set S are typically represented

in the form of a binary relation ≻P⊆ S × S such that for any two elements u, v ∈ S,

u ≻P v if and only if u is preferred to v.
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# Property of rela-
tion

Definition eq po io wo to

1. reflexive ∀x ∈ S : x ≻ x X

2. irreflexive ∀x ∈ S : x 6≻ x X X X X

3. symmetric ∀x, y ∈ S : x ≻ y ⇒ y ≻ x X

4. asymmetric ∀x, y ∈ S : x ≻ y ⇒ y 6≻ x X X X X

5. transitive ∀x, y, z ∈ S : x ≻ y ∧ y ≻ z ⇒
x ≻ z

X X X X X

6. total or complete ∀x, y ∈ S : x 6= y ⇒ x ≻ y ∨ y ≻
x

X

7. negatively transi-
tive

∀x, y, z ∈ S : x ≻ y ⇒ x ≻ z ∨
z ≻ y

X X

8. ferrers ∀x, y, z, w ∈ S :
(x ≻ y ∧ z ≻ w) ⇒
(x ≻ w ∨ z ≻ y)

X X X

Table 2.1 Properties of binary relations

We focus only on strict partial order preference relations, i.e., relations that are

both irreflexive and transitive, because transitivity is a natural property of any rational

preference relation [Morgenstern and Von Neumann, 1944, French, 1986a, Mas-Colell

et al., 1995], and irreflexivity ensures that the preferences are strict.

With respect to any strict partial order preference relation ≻P , we say that two

elements u and v are indifferent, denoted u ∼P v, whenever u 6≻P v and v 6≻P u.

For preference relations ≻i, ≻′
i,� and ≻d , we denote the corresponding indifference

relation by ∼i, ∼′
i,∼� and ∼d respectively. We will drop the subscripts whenever they

are understood from the context.

Proposition 1. For any strict partial order preference relation ≻P , the corresponding

indifference relation ∼P is reflexive and symmetric.

Proof. ∼P is reflexive because u 6≻P u by the irreflexivity of ≻P ; it is symmetric because

u ∼P v ⇔ u 6≻P v ∧ v 6≻P u⇔ v ∼P u.

It is important to note that indifference with respect to a strict partial order is not

necessarily transitive. For instance, ≻X= {(b, c)} is a strict partial order on the set
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{a, b, c} with b ∼X a, a ∼X c but b ≻X c.

2.2.1 Qualitative Preference Languages

Let V = {Xi} be a set of preference variables, each with a domain Di. An outcome

α ∈ O is a complete assignment to all the preference variables, denoted by the tuple

α := 〈α(X1), α(X2), . . . , α(Xm)〉 such that α(Xi) ∈ Di for each Xi ∈ V . The set of all

possible outcomes is given by O =
∏

Xi∈V Di.

Brafman’s seminal work [Brafman et al., 2006] attempts to address the problem of

representing and reasoning with qualitative preferences by introducing preference net-

works that capture: (a) intra-variable or intra-attribute preferences specifying prefer-

ences over the domains of attributes; (b) the relative importance among the attributes.

Therefore, we consider a preference language for specifying: (a) conditional intra-variable

preferences ≻i that are strict partial orders (i.e., irreflexive and transitive relations) over

Di; and (b) conditional relative importance preferences � that are strict partial orders

over V .

Definition 1 (Intra-variable Preference [Brafman et al., 2006]). Intra-variable preference

with respect to a attribute Xi (denoted ≻i), is an irreflexive, transitive and complete

binary preference relation on Di. ∀u, v ∈ Di : u ≻i v iff u is preferred to v with respect

to Xi.

The intra-variable preference relation can be conditional in some settings, and in

that case, the preferences over the values of a variable Xi may be influenced by the

values assigned to a set of parent variables Pa(Xi). The parent variables are said to

“influence” the preference over the values of Xi, and the the the variable Xi is said to

be dependent on the variables in Pa(Xi). Thus, there is a mapping from the set of all

possible assignments of the parent variables Pa(Xi) to a set of intra-variable preference

relations {≻i}.
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A setX ⊆ X of attributes is said to be preferentially independent of the set Y = X\X

of attributes if none of the variables in X are dependent on any of the variables in Y

and vice versa. When the two sets contain exactly one variable each, then we simply

say that the variables are preferentially independent of each other.

Definition 2 (Relative Importance [Brafman et al., 2006]). Relative importance pref-

erence with respect to the non-functional attributes X (denoted �), is an irreflexive,

transitive binary preference relation on X such that Xi � Xj iff Xi is relatively more

important than Xj.

As with intra-variable preferences, relative importance may also be conditional. Con-

ditional relative importance is specified as a preference relation on the set of variables

conditioned on the values assigned to a set of selector variables.

2.2.2 Representing Qualitative Preferences: CP-nets and TCP-nets

Preference networks [Boutilier et al., 2004, Brafman et al., 2006] offer a compact,

directed graph representation of intra-variable and relative importance qualitative pref-

erences. The nodes of the graph represent the attributes (X ), with the node annotations

representing the intra-variable preferences under various conditions specified in terms of

the valuations of a set of other parent variables. There are various types of edges repre-

senting the conditional intra-variable dependency (between a variable and its parents)

and the relative importance preferences among the attributes.

CP-nets [Boutilier et al., 2004] specify conditional intra-variable preferences ≻i over

a set of variables V . Each node in the graph corresponds to a variable Xi ∈ V , and

each dependency edge (Xi, Xj) in the graph captures the fact that the intra-variable

preference ≻j with respect to variable Xj is dependent (or conditioned) on the valuation

of Xi. For any variable Xj, the set of variables {Xi : (Xi, Xj)is an edge} that influence

≻j are called the parent variables, denoted Pa(Xj). Each node Xi in the graph is
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associated with a conditional preference table (CPT) that maps all possible assignments

to the parents Pa(Xi) to a total order over Di. An acyclic CP-net is one that does not

contain any dependency cycles.

TCP-nets [Brafman et al., 2006] extend CP-nets by allowing additional edges (Xi, Xj)

to be specified, describing the relative importance among variables (Xi � Xj). Each

relative importance edge could be either unconditional (directed edge) or conditioned

on a set of selector variables (analogous to parent variables in the case of intra-variable

preferences). Each edge (Xi, Xj) describing conditional relative importance is undirected

and is associated with a table (analogous to the CPT) mapping each assignment of the

selector variables to either Xi �Xj or vice versa. Figure 2.1 illustrates a TCP-net.

A

B C

0 ≻A 1

A = 0 : 0 ≻C 1A = 0 : 1 ≻B 0

A = 1 : 0 ≻B 1 A = 1 : 1 ≻C 0

Figure 2.1 Example of a TCP-net with 3 binary variables, namely A, B
and C. It encodes the fact that the preference over values of
B and C are dependent on the value assigned to the variable
A, and that it is relatively more important to have a preferred
valuation for the variable B in comparison to having a preferred
valuation for C. The intra-attribute preferences are given in the
boxes next to the variables.

An extended preference language due to Wilson [Wilson, 2004b, Wilson, 2004a] allows

arbitrary preference statements of the form y : x ≻i x
′[Z] where X ∈ X , x, x′ ∈ DX ,

y ∈ Y ⊆ X\{X}, Z ⊆ X\Y\{X}.
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2.2.3 Reasoning with Qualitative Preferences: Ceteris Paribus Semantics

Ceteris paribus is a Latin word that stands for “all else being equal”. A formal

semantics in terms of the ceteris paribus interpretation for preference languages involving

conditional intra-variable and relative importance preferences (CP-nets and TCP-nets)

was given by Brafman et al. in [Brafman et al., 2006].

A set X ⊆ X of attributes is preferentially independent of the set Y = X \ X of

attributes iff for all x1, x2 ∈
∏

Xi∈X Di; y1, y2 ∈
∏

Xi∈Y Di, we have: x1y1 is preferred to

x2y1 (denoted x1y1 ≻ x2y1, where ≻ is the preference relation on complete assignments

to all attributes) iff x1y2 is preferred to x2y2 (i.e., x1y2 ≻ x2y2). We then say that x1 is

preferred to x2 ceteris paribus, i.e., “all else being equal”.

Given two preferentially independent attributes Xi and Xj, Xi is relatively more

important than Xj , denoted by Xi �Xj , if

∀w ∈
∏

Xl∈W Dl, where W = X − {Xi, Xj}

∀x1, x2 ∈ Di, ∀ya, yb ∈ Dj : x1 ≻i x2 ⇒ x1yaw ≻ x2ybw

Note that x1yaw ≻ x2ybw even if yb ≻j ya, as any worsening of Xj is preferred to any

worsening of Xi.

2.2.4 Dominance Testing

One of the important tasks in reasoning with qualitative intra-variable and relative

importance preferences is dominance testing, i.e., given two complete assignments to

variables or outcomes, determine whether one outcome is preferred to (dominates) the

other. There are several ways in which one could define dominance between two out-

comes. We list here two definitions based on the ceteris paribus semantics that require

the existence of a sequence of outcomes called the flipping sequence. A flip from one

outcome to the next in the sequence represents the change of one or more variables in
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the outcome under certain conditions, while the outcomes are equal with respect to all

other variables.

Definition 3 (Worsening flipping sequence: adapted from [Brafman et al., 2006]). A

sequence of outcomes α = γ1, γ2, · · ·γn−1, γn = β such that

α = γ1 ≻
◦ γ2 ≻

◦ · · · ≻◦ γn−1 ≻
◦ γn = β

is a worsening flipping sequence with respect to a set of preference statements if

and only if, for 1 ≤ i < n1, either

1. (V-flip) outcome γi is different from the outcome γi+1 in the value of exactly one

variable Xj, and γi(Xj) ≻j γi+1(Xj), or

2. (I-flip) outcome γi is different from the outcome γi+1 in the value of exactly two

variables Xj and Xk, γi(Xj) ≻j γi+1(Xj), and Xj �Xk.

The V-flips are induced directly by the conditional intra-variable preferences ≻i, and

the I-flips are additional flips induced by the relative importance � over variables in

conjunction with ≻i. Note that the notion of an I-flip in this definition revises the one

presented in [Brafman et al., 2006] in order to accurately reflect the semantics of ≻◦ 2.

Furthermore, this definition adapts the original definition such that flips are worsening

rather than improving. Given a TCP-net N and a pair of outcomes α and β, Brafman

et al. have shown that α ≻◦ β with respect to N if and only if there is a worsening

flipping sequence with respect to N from α to β.

An issue with dominance testing with respect to ≻◦ is that the interpretation of

relative importance statements is pairwise, as illustrated by Wilson in [Wilson, 2004b,

Wilson, 2004a]. In this case, I-flips allow only two variables to be flipped at a time. On

1We assume the dominance relation is irreflexive and transitive in this thesis.
2Specifically, Definition 3 relaxes the stronger requirement (see Definition 13 in [Brafman et al., 2006])

that “γi+1(Xj) ≻j γi(Xj) and γi(Xk) ≻k γi+1(Xk)” to a weaker requirement that “γi+1(Xj) ≻j γi(Xj)”
– based on a personal communication exchanged by the authors with Ronen Brafman.
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the other hand, Wilson’s extended semantics [Wilson, 2004b, Wilson, 2004a] (denoted

≻w) defines a worsening I-flip to allow multiple variables to be changed at a time in

order to produce a worse outcome. This generalizes the search for flipping sequences to

a search for swapping3 sequences.

Definition 4 (Worsening flipping sequence with revised I-flip: adapted from [Wilson,

2004b, Wilson, 2004a]). A sequence of outcomes α = γ1, γ2, · · ·γn−1, γn = β such that

α = γ1 ≻
w γ2 ≻

w · · · ≻w γn−1 ≻
w γn = β

is a worsening flipping sequence with respect to a set of preference statements if

and only if, for 1 ≤ i < n, either

1. (V-flip) as in Definition 3

2. (I-flip) outcome γi is different from the outcome γi+1 in the value of variables Xj

and Xk1
, Xk2

, · · ·Xkn
, γi(Xj) ≻j γi+1(Xj), and Xj �Xk1

, Xj �Xk2
, · · · , Xj �Xkn

.

Given a TCP-net N and a pair of outcomes α and β, according to Wilson’s semantics

we say that N entails α ≻w β iff there is a worsening flipping sequence with respect to

N from α to β.

Dominance testing has been shown to be PSPACE-complete [Goldsmith et al., 2008]

for CP-nets and TCP-nets under all the above semantics which are based on the ceteris

paribus interpretation of qualitative preferences.

2.3 Compositional Systems

A compositional system consists of a repository of pre-existing components from

which we are interested in assembling compositions that satisfy a pre-specified function-

ality. Formally, a compositional system is a tuple 〈R,⊕, |=〉 where:

3To simplify the terminology, we will henceforth use the term flipping sequence to refer to Wilson’s
swapping sequence as well.
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• R = {W1,W2 . . .Wr} is a set of available components,

• ⊕ denotes a composition operator that functionally aggregates components and

encodes all the functional details of the composition. ⊕ is a binary operation on

components Wi,Wj in the repository that produces a composition Wi ⊕Wj.

• |= is a satisfaction relation that evaluates to true when a composition satisfies

some pre-specified functional properties.

Definition 5 (Compositions, Feasible Compositions and Extensions). Given a compo-

sitional system 〈R,⊕, |=〉, and a functionality ϕ, a composition C = Wi1 ⊕Wi2 ⊕ . . .Win

is an arbitrary collection of components Wi1 ,Wi2 , . . . ,Win s.t. ∀j ∈ [1, n] : Wij ∈ R.

i. C is a feasible composition whenever C |= ϕ;

ii. C is a partial feasible composition whenever ∃Wi1 . . .Win ∈ R : C⊕Wi1⊕. . .⊕Win

is a feasible composition; and

iii. C⊕Wi is a feasible extension of a partial feasible composition C whenever C⊕Wi

is a feasible or a partial feasible composition.

2.3.1 Functional Composition

Given a compositional system 〈R,⊕, |=〉 and a functionality ϕ, an algorithm that

produces a set of feasible compositions (satisfying ϕ) is called a functional composition

algorithm. The most general class of functional composition algorithms we consider can

be treated as black boxes, simply returning a set of feasible compositions satisfying ϕ in

a single step. Some other functional composition algorithms proceed by computing the

set of feasible extensions of partial feasible compositions incrementally.

Definition 6 (Incremental Functional Composition Algorithm). A functional composi-

tion algorithm is said to be incremental if, given an initial partial feasible composition
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C and the desired functionality ϕ, the algorithm computes the set of feasible extensions

to C.

An incremental functional composition algorithm can be used to compute the feasible

compositions by recursively invoking the algorithm on the partial feasible compositions

it produces starting with the empty composition (⊥), and culminating with a set of

feasible compositions satisfying ϕ. In this sense, incremental functional composition

algorithms are similar to their “black box” counterparts. However, (as we later show

in Chapter 4.2.5) in contrast to their “black box” counterparts, incremental functional

composition algorithms can be exploited in the search for the most preferred feasible

compositions, by interleaving each step of the functional composition algorithm with

the optimization of the valuations of non-functional attributes (with respect to the user

preferences). This allows us to develop algorithms that can eliminate partial feasible

compositions that will lead to less preferred feasible compositions from further consid-

eration early in the search.

Different approaches to functional composition, (e.g., [Traverso and Pistore, 2004,

Lago et al., 2002, Baier et al., 2008, Passerone et al., 2002]) differ in terms of (a) the

languages used to represent the desired functionality ϕ and the compositions, and (b)

the algorithms used to verify whether a composition C satisfies ϕ, i.e., C |= ϕ. We have

intentionally abstracted the details of how functionality ϕ is represented (e.g., transition

systems, logic formulas, plans, etc.) and how a composition is tested for satisfiability

(|=) against ϕ, as the primary focus of our work is orthogonal to details of the specific

methods used for functional composition.

2.3.2 Preferences over Non-functional Attributes

We now turn to the non-functional aspects of compositional systems. In addition to

obtaining functionally feasible compositions, users are often concerned about the non-
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functional aspects of the compositions, e.g., the reliability of a composite Web service. In

such cases, users seek the most preferred compositions among those that are functionally

feasible, with respect to a set of non-functional attributes describing the components. In

order to compute the most preferred compositions, it is necessary for the user to specify

his/her preferences over a set of non-functional attributes X .

Notation. In general, for any relation≻P , we use the same to denote the transitive

closure of the relation as well, and 6≻P or ¬ ≻P to denote its complement. The list of

notations used in this thesis are given in Table 2.2.

Representing Multi-Attribute Preferences. Following the representation

scheme introduced by Boutilier et al. [Boutilier et al., 2004] and Brafman et al. [Brafman

et al., 2006], we model the user’s preferences with respect to multiple attributes in two

forms: (a) intra-attribute preferences with respect to each non-functional attribute in

X , and (b) relative importance over all attributes.

Definition 7 (Intra-attribute Preference). The intra-attribute preference relation, de-

noted by ≻i is a strict partial order (irreflexive and transitive) over the possible valua-

tions of an attribute Xi ∈ X . ∀u, v ∈ Di : u ≻i v iff u is preferred to v with respect to

Xi.

Definition 8 (Relative Importance). The relative importance preference relation, de-

noted by � is a strict partial order (irreflexive and transitive) over the set of all attributes

X . ∀Xi, Xj ∈ X : Xi �Xj iff Xi is relatively more important than Xj.

4We will use the terms composition and collection; and component and object interchangeably.
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Notation Meaning
R = {W1 · · ·Wr} Set of components in the repository
⊕ Operation that composes components from R
Ci A composition or collection 4of a set of components from R
C A set {Ci} of compositions
X = {X1 · · ·Xm} Set of non-functional attributes
D = {D1 · · ·Dm} Set of possible valuations (domains) of attributes in X respec-

tively
ui, vi, ai, bi · · · ∈ Di Valuations of an attribute with domain Di

Ai, Bi · · · ⊆ Di Sets of valuations of an attribute with domain Di

VWi
Overall valuation of the component Wi with respect to all at-
tributes X

VCi
Overall valuation of the composition Ci with respect to all at-
tributes X

VWi
(Xj) Valuation of the component Wi with respect to the attribute Xj

VCi
(Xj) Valuation of the composition Ci with respect to the attribute

Xj

≻i,≻X Intra-attribute preference over valuations ofXi orX respectively
(user input)

� Relative importance among attributes (user input)
Φi Aggregation function that computes the valuation of a compo-

sition with respect to Xi as a function of the valuation of its
components

≻′
i Derived preference relation on the aggregated valuations with

respect to Xi

≻d Dominance relation that compares two compositions in terms of
their aggregated valuations over all attributes

Ψ≻(S) The non-dominated set of elements in S with respect to ≻
ϕ User specified functionality to be satisfied by a feasible compo-

sition

Table 2.2 Notation
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CHAPTER 3. Efficient Preference Reasoning Techniques

As we have seen in Chapter 1, CP-nets [Boutilier et al., 2004], TCP-nets [Brafman

et al., 2006] and their extensions [Wilson, 2004b, Wilson, 2004a] capture qualitative

intra-variable preferences and relative importance over a set of variables. Dominance

testing for these languages has been shown to be PSPACE-complete [Goldsmith et al.,

2008] based on the ceteris paribus (“all else being equal”) interpretation of preferences.

3.1 Efficient Dominance Testing for Unconditional

Preferences

In this section, we attempt to alleviate the complexity of dominance testing in TCP-

nets by restricting the preference language to unconditional qualitative preferences. We

consider TUP-nets, an unconditional fragment of TCP-nets. We introduce a dominance

relation for TUP-nets and compare it with its unconditional counterparts for TCP-nets

and their variants. We provide a polynomial time algorithm for dominance testing for

TUP-nets. TUP-nets are not special cases of already known restrictions of CP-/TCP-

nets for which polynomial time dominance testing algorithms exist [Boutilier et al.,

2004].

3.1.1 A Language for Unconditional Preferences

Let X = {Xi} be a set of variables, each with a domain Di. An outcome α is a com-

plete assignment to all the variables, denoted by the tuple α := 〈α(X1), α(X2), . . . , α(Xm)〉
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such that α(Xi) ∈ Di for each Xi ∈ X . We consider a preference language LTUP for

specifying: (a) unconditional intra-variable preferences ≻i that are strict partial orders

(i.e., irreflexive and transitive relations) over Di for each Xi ∈ X ; and (b) unconditional

relative importance preferences � that are strict partial orders over X .

Let LCP , LTCP and LExt denote the preference languages of CP-nets, TCP-nets (an

extension of CP-nets) and Wilson’s extension to TCP-nets respectively. We note that:

• LTUP allows the expression of relative importance while LCP does not; and LCP

allows the expression of conditional intra-variable preferences while LTUP does not.

• LTUP is less expressive than LTCP because it does not allow the expression of

conditional preferences.

• When restricted to unconditional preferences, LTCP = LTUP .

• LExt is more expressive than LTCP [Wilson, 2004b, Wilson, 2004a], and hence,

LTUP as well.

3.1.2 Dominance Testing for LTUP

We now provide a polynomial time dominance testing approach for LTUP . We pro-

ceed by defining a relation �i (for each variable Xi ∈ X ) that is derived from ≻i.

Definition 9 (�i). ∀u, v ∈ Di : u �i v ⇔ u = v ∨ u ≻i v

Since ≻i is a strict partial order (irreflexive and transitive), it can be shown that

�i is a preorder (reflexive and transitive). We next define dominance of α over β with

respect to {≻i} and � using a first order logic formula.

Definition 10 (Dominance for Unconditional Preferences). Given input preferences

{≻i} and �, and a pair of outcomes α and β, we say that α dominates β (denoted

α ≻• β) iff:
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∃Xi : α(Xi) ≻i β(Xi)

∧ ∀Xk : (Xk �Xi ∨Xk ∼� Xi)⇒ α(Xk) �k β(Xk)

where Xk ∼� Xi ⇔ Xk 6� Xi ∧Xi 6� Xk, and Xi is called the witness of the relation.

Intuitively, this definition of dominance of α over β (i.e., α ≻• β) requires that α

is preferred to β with respect to at least one variable, namely the witness. Further,

it requires that for all variables that are relatively more important than or indifferent

to the witness, α is either equal to or is preferred to β. In Example 12, α ≻• β, with

witness X1.

3.1.2.1 Properties of Dominance

We now proceed to analyze some properties of ≻•. Specifically, we would like to

ensure that ≻• has two desirable properties of preference relations: irreflexivity and

transitivity, which make it a strict partial order. First, it is easy to see that ≻• is

irreflexive, due to the irreflexivity of ≻i (since it is a partial order).

Proposition 2 (Irreflexivity of ≻•). ∀α : α 6≻• α.

The above proposition ensures that the dominance relation ≻• is strict over compo-

sitions. In other words, no composition is preferred over itself. Regarding transitivity,

we observe that ≻• is not transitive when ≻i and � are both arbitrary strict partial

orders, as illustrated by the following example.

Example 1. Let X = {X1, X2, X3, X4}, and for each Xi ∈ X : Di = {ai, bi} with

ai ≻i bi. Suppose that X1 �X3 and X2 �X4. Let α = 〈a1, a2, b3, b4〉, β = 〈b1, a2, a3, b4〉

and γ = 〈b1, b2, a3, a4〉. Clearly, we have α ≻• β (with X1 as witness), β ≻• γ (with X2

as witness), but there is no witness for α ≻• γ, i.e., α 6≻• γ according to Definition 10.

Because transitivity of preference is a necessary condition for rational choice [Morgen-

stern and Von Neumann, 1944, French, 1986a], we proceed to investigate the possibility
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Xk

Xi

Xi

Xj

Xj

Xk Xi

Xj

Xk

Xk ∼⊲ Xi

(a) (b) (c)

Xk ⊲ Xi

Figure 3.1 Xi �Xj ∧ (Xk �Xi ∨Xk ∼� Xi)

of obtaining such a dominance relation by restricting �. In particular, we find that ≻• is

transitive when � is restricted to a special family of strict partial orders, namely interval

orders as defined below. We prove that such a restriction is necessary and sufficient for

the transitivity of ≻•.

Definition 11 (Interval Order). A binary relation R ⊆ X ×X is an interval order iff it

is irreflexive and satisfies the ferrers axiom [Fishburn, 1985]: for all Xi, Xj, Xk, Xl ∈ X ,

we have:

(Xi RXj ∧Xk RXl)⇒ (Xi RXl ∨Xk RXj)

We now proceed to establish the transitivity of ≻• when � is an interval order. We

make use of two intermediate propositions 3 and 4 that are needed for the task.

In Proposition 3, we prove that if an attribute Xi is relatively more important than

Xj, then Xi is not more important than a third attribute Xk implies that Xj is also

not more important than Xk. This will help us prove the transitivity of the dominance

relation. Figure 3.1 illustrates the cases that arise.

Proposition 3. ∀Xi, Xj, Xk : Xi �Xj ⇒
(
(Xk �Xi ∨Xk ∼� Xi)⇒ (Xk �Xj ∨Xk ∼� Xj)

)

The proof follows from the fact that � is a partial order.

Proof.
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Xi

X ′j

Xj Xi

X ′i

Xj

(a) (b) (c)

Xi Xj

Xi

X ′j

Xj Xi

X ′i

Xj

(d) (e)

X ′j

XjXi

X ′i

(f)

Xu = Xj Xu = Xi

Xv = Xi Xv = Xj

Contradiction!

(⊲ is an interval order)

Figure 3.2 Xi ∼� Xj

1. Xi �Xj (Hyp.)

2. Xk �Xi ∨Xk ∼� Xi (Hyp.) Show Xk �Xj ∨Xk ∼� Xj

(a) Xk �Xi ⇒ Xk �Xj By transitivity of � and (1.); see Figure 3.1(a)

(b) Xk ∼� Xi ⇒ Xk �Xj ∨Xk ∼� Xj

i. Xk ∼� Xi (Hyp.)

ii. (Xk �Xj) ∨ (Xj �Xk) ∨ (Xk ∼� Xj) Always; see Figure 3.1(b,c)

iii. Xj �Xk ⇒ Xi �Xk (1.) Contradiction!

iv. Xk �Xj ∨Xk ∼� Xj (2.2.ii., iii.)

3. Xi �Xj ⇒
(
(Xk �Xi ∨Xk ∼� Xi)⇒ (Xk �Xj ∨Xk ∼� Xj)

)
(1., 2.1, 2.2)

Proposition 4 states that if attributes Xi, Xj are such that Xi ∼� Xj then at least

one of them, Xu is such that with respect to the other, Xv, there is no attribute Xk that

is less important while at the same time Xk ∼� Xu. This result is needed to establish

the transitivity of the dominance relation.

Proposition 4. If � is an interval order, then

∀Xi, Xj , u 6= v,Xi ∼� Xj
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⇒ ∃Xu, Xv ∈ {Xi, Xj}, ∄Xk : (Xu ∼� Xk ∧Xv �Xk).

Proof. Let Xi ∼� Xj, and X ′
i and X ′

j be variables that are less important than Xi

and Xj respectively (if any). Figure 3.2 illustrates all the possible cases that arise.

Figure 3.2(a, b, c, d, e) illustrates the cases when at most one of X ′
i and X ′

j exists, and

in each case the claim holds trivially. For example, in the cases of Figure 3.2(a, b, c),

both Xu = Xi;Xv = Xj and Xu = Xj ;Xv = Xi satisfy the implication, and in the cases

of Figure 3.2(d, e), the corresponding satisfactory assignments to Xu and Xv are shown

in the figure. The final case (Figure 3.2(f)) corresponds to � not being an interval order

(see Definition 11). Hence, the proposition holds in all cases.

The above proposition reflects the interval order property of the � relation, and

relates to Example 1 in which ≻• was shown to be intransitive when � is not an interval

order. In fact, if relative importance was defined as a strict partial order instead, it is

easy to see that the above proof does not hold. Given that α ≻• β with witness Xi and

β ≻• γ with witness Xj , the above proposition guarantees that one among Xi and Xj

can be chosen as a potential witness for α ≻• γ so that the conditions demonstrated

in Example 1 are avoided. Using the propositions 3 and 4, we are now in a position to

prove the transitivity of ≻• in Proposition 5.

Proposition 5 (Transitivity of ≻•). ∀α, β, γ,

α ≻• β ∧ β ≻• γ ⇒ α ≻• γ when � is an interval order.

The proof proceeds by considering all possible relationships between Xi, Xj, the

respective attributes that are witnesses of the dominance of α over β and β over γ.

Lines 5, 6, 7 in the proof establish the dominance of α over γ in the cases Xi � Xj ,

Xj �Xi and Xi ∼� Xj respectively. In the first two cases, the more important attribute

among Xi and Xj is shown to be the witness for α ≻• γ with the help of Proposition 3;

and in the last case we make use of Proposition 4 to show that at least one of Xi, Xj is

a witness for α ≻• γ.
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Proof.

1. α ≻• β (Hyp.)

2. β ≻• γ (Hyp.)

3. ∃Xi : α(Xi)≻
′
iβ(Xi) (1.)

4. ∃Xj : β(Xj)≻′
jγ(Xj) (2.)

Three cases arise: Xi �Xj(5.), Xj �Xi(6.) and Xi ∼� Xj(7.).

5. Xi �Xj ⇒ α ≻• γ

1. Xi �Xj (Hyp.)

2. β(Xi)�
′
iγ(Xi) (2., 5.1.)

3. α(Xi)≻′
iγ(Xi) (3., 5.2.)

4. ∀Xk : (Xk �Xi ∨Xk ∼� Xi)⇒ α(Xk)�
′
kγ(Xk)

i. Let Xk �Xi ∨Xk ∼� Xi (Hyp.)

ii. α(Xk)�
′
kβ(Xk) (1., 5.4.i.)

iii. Xk �Xj ∨Xk ∼� Xj (5.4.i., P roposition 3)

iv. β(Xk)�
′
kγ(Xk) (2., 5.4.iii.)

v. α(Xk)�
′
kγ(Xk) (5.4.ii., 5.4.iv.)

5. Xi �Xj ⇒ α ≻• γ (5.1., 5.3., 5.4.)

6. Xj �Xi ⇒ α ≻• γ

1. This is true by symmetry of Xi, Xj in the proof of (5.); in this case, it can

easily be shown that α(Xj)≻′
iγ(Xj) and ∀Xk : (Xk � Xj ∨ Xk ∼� Xj) ⇒

α(Xk)�
′
kγ(Xk).

7. Xi ∼� Xj ⇒ α ≻• γ

1. Xi ∼� Xj (Hyp.)
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2. ∃Xu, Xv ∈ {Xi, Xj} : Xu 6= Xv ∧ ∄Xk : (Xu ∼� Xk ∧Xv �Xk)

(7.1., P roposition 4)

3. Without loss of generality, suppose that Xu = Xi, Xv = Xj (Hyp.).

4. β(Xi)�
′
iγ(Xi) (2., 7.1.)

5. α(Xi)≻′
iγ(Xi) (3., 7.4.)

6. ∀Xk : Xk �Xi ⇒ α(Xk)�
′
kγ(Xk).

i. Xk �Xi (Hyp.)

ii. α(Xk)�
′
kβ(Xk) (1., 7.6.i.)

iii. Xk �Xj ∨Xk ∼� Xj Because Xj �Xk Contradicts (7.1., 7.6.i.)!

iv. β(Xk)�
′
kγ(Xk) (2., 7.6.iii.)

v. α(Xk)�
′
kγ(Xk) (7.6.ii., 7.6.iv.)

7. ∀Xk : Xk ∼� Xi ⇒ α(Xk)�
′
kγ(Xk)

i. Xk ∼� Xi (Hyp.)

ii. α(Xk)�
′
kβ(Xk) (1., 7.7.i.)

iii. Xk �Xj ∨Xk ∼� Xj Because Xj �Xk Contradicts (7.2., 7.3.)!

iv. β(Xk)�
′
kγ(Xk) (2., 7.7.iii.)

v. α(Xk)�
′
kγ(Xk) (7.7.ii., 7.7.iv.)

8. ∀Xk : Xk �Xi ∨Xk ∼� Xi ⇒ α(Xk)�
′
kγ(Xk) (7.6., 7.7.)

9. Xi ∼� Xj ⇒ α ≻• γ (7.5., 7.8.)

8. (Xi �Xj ∨Xj �Xi ∨Xi ∼� Xj)⇒ α ≻• γ (5., 6., 7.)

9. α ≻• β ∧ β ≻• γ ⇒ α ≻• γ (1., 2., 8.)

From Propositions 2 and 5, we have the first main result of this chapter as follows.

Theorem 1. ≻• is a strict partial order when intra-attribute preferences ≻i are arbitrary

strict partial orders and relative importance � is an interval order.
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X ′j

XjXi

X ′i

Figure 3.3 A 2⊕ 2 substructure, not an Interval Order

The above theorem applies to all partially ordered intra-variable preferences and a

wide range of relative importance preferences including total orders, weak orders and

semi orders [Fishburn, 1985] which are all interval orders. Having seen in Example 1

that the transitivity of ≻• does not necessarily hold when � is an arbitrary partial

order, a natural question that arises here is whether there is a condition weaker than

the interval order restriction on � that still makes ≻• transitive. The answer turns out

to be negative, which we show next. We make use of a characterization of interval orders

by Fishburn in [Fishburn, 1985], which states that � is an interval order if and only if

2⊕ 2 * �, where 2⊕ 2 is a relational structure shown in Figure 3.3. In other words, �

is an interval order if and only if it has no restriction of itself that is isomorphic to the

partial order structure shown in Figure 3.3.

Theorem 2. For arbitrary partially ordered intra-attribute preferences ≻• is transitive

only if relative importance � is an interval order.

Proof. Assume that � is not an interval order. This is true if and only if 2 ⊕ 2 ⊆ �.

However, we showed in Example 1 that in such a case ≻• is not transitive. Hence, ≻• is

transitive only if relative importance � is an interval order.

For the special case of � = ∅, i.e., when there are no relative importance prefer-

ences specified, (Xk ∼� Xi) always holds for any pair of variables Xi, Xk ∈ X . Hence,

dominance testing reduces to:

α ≻• β ⇔ ∃Xi : α(Xi) ≻i β(Xi)∧

∀Xk : α(Xk) �k β(Xk)
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3.1.2.2 Complexity of Dominance Testing

We now analyze the complexity of evaluating α ≻• β in terms of the following

parameters: (a) number of variables m = |X |; (b) size of the domains of variables

n = maxXi∈X |Di|; (c) size of the intra-variable preference kint = maxXi∈X | ≻i |; and (d)

size of the relative importance preference relation krel = |� |.

The evaluation of ≻• (Definition 10) involves the evaluation of two clauses for each

variableXi ∈ X . The first clause checks if α(Xi) ≻i β(Xi). The complexity of evaluating

the first clause for each Xi is thus O(kint). For each Xi, the second clause checks if

the implication holds for each Xk ∈ X − {Xi}. The left hand side of the implication

computes Xk �Xi∨Xk ∼� Xi, or equivalently Xi 6� Xk and has complexity O(krel); and

the right hand side computes α(Xk) �k β(Xk) and has complexity O(kint) (similar to

the complexity of the first clause). Hence, the overall complexity of evaluating α ≻• β

is O
(
m

(
kint + m(krel + kint)

))
, or O

(
m2(kint + krel)

)
. Since krel = | � | (and hence

bounded by m2); and kint = | ≻i | (and hence bounded by n2), the complexity can also

be expressed as O
(
m2(m4 +n4)

)
in terms of the number of variables and domain size of

variables.

3.1.3 Semantics: Relationship Between ≻◦, ≻w & ≻•

We investigate the relationship between the semantics ≻◦, ≻•, and ≻w for the lan-

guage LTUP . We show that:

a) ≻•⊆≻w

b) ≻•=≻w when � is an interval order

c) (≻•)⋆ =≻w, where (≻•)⋆ is the transitive closure of ≻•

d) ≻• 6⊆≻◦ and ≻◦ 6⊆≻• in general; but ≻◦⊆≻• when � is an interval order
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Theorem 3. ≻• ⊆ ≻w.

Proof.

We will show that α ≻• β ⇒ α ≻w β for any pair of outcomes α, β.

Suppose that α ≻• β with witness Xi (see Definition 10). Define the sets L =

{Xl : Xi �Xl}, M = {Xl : (Xl �Xi ∨Xl ∼� Xi) ∧ α(Xl) ≻l β(Xl) ∧Xl 6= Xi}, and

M ′ = {Xl : (Xl �Xi ∨Xl ∼� Xi)∧α(Xl) = β(Xl)∧Xl 6= Xi}. Clearly, the sets {Xi},

L, M , M ′ form a partition of X . Let Xt1, Xt2, . . .Xtn be an enumeration of M .

We now construct a sequence of outcomes γt1, γt2, . . . , γtn corresponding to variables

Xt1, Xt2, . . .Xtn as follows. γt1 = 〈γt1(X1), γt1(X2), . . . γt1(Xm)〉 such that γt1(Xt1) =

α(Xt1) and ∀Xj ∈ X − {Xt1} : γt1(Xj) = β(Xj). Similarly, construct the ith outcome

γti = 〈γti(X1), γti(X2), . . . γti(Xm)〉 such that γti(Xti) = α(Xti); and ∀Xj ∈ X − {Xti} :

γti(Xj) = γti−1(Xj).

Now, we make use of Definition 4 to compare these outcomes with respect to ≻w.

γt1 ≻w β because γt1(Xt1) = α(Xt1) ≻t1 β(Xt1) with γt1 and β being equal in all variables

other than Xt1 (V-flip). Also γti+1 ≻w γti because γti+1(Xti) = α(Xti) ≻ti γti(Xti) =

β(Xti), with γti+1 and γti being equal in variables other than Xti. For the last outcome

in this sequence γt1, . . . , γtn, we have α ≻w γtn because α(Xi) ≻i γtn(Xi) = β(Xi) and

∀Xl ∈ M ∪M ′ : α(Xl) = γtn(Xl), regardless of the assignments to variables Xj ∈ L

(they are less important than Xi) (I-flip). Hence, α ≻w γtn ≻w . . . ≻w γt1 ≻w β. By the

transitivity of ≻w [Wilson, 2004b, Wilson, 2004a], α ≻w β.

We now investigate the other side of the inclusion. We recall Example 1 that is

relevant in this context.

Example 1 (continued). Recall that α = 〈a1, a2, b3, b4〉, β = 〈b1, a2, a3, b4〉 and

γ = 〈b1, b2, a3, a4〉 with α ≻• β (with X1 as witness), β ≻• γ (with X2 as witness), but

α 6≻• γ according to Definition 10. However, there exists a sequence of flips from α to

γ, namely α, β, γ according to Definition 4. Hence, α ≻w γ.
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This example shows that ≻w ⊆ ≻• does not hold in general. However, observe that

≻• holds for each consecutive pair of outcomes in the flipping sequence. Hence, if ≻• is

transitive, we can show that ≻w ⊆ ≻•.

Theorem 4. ≻w ⊆ ≻• when � is an interval order.

Proof. Given a set of intra-variable preferences {≻i} and relative importance �, we

show that α ≻w β ⇒ α ≻• β when � is an interval order.

Let α ≻w β. According to Definition 4, there exists a set of outcomes γ1, γ2, · · · , γn−1, γn

such that α = γ1 ≻w γ2 ≻w · · · ≻w γn−1 ≻w γn = β such that for all 1 ≤ i < n there is

either a V-flip or an I-flip between γi and γi+1.

Case 1: (V-flip) γi and γi+1 differ in the value of exactly one variable Xj and

γi(Xj) ≻j γi+1(Xj). WithXj as the witness, the first clause in the definition of γi ≻• γi+1

is satisfied (γi(Xj) ≻j γi+1(Xj)). Because γi(Xk) = γi+1(Xk) for all Xk ∈ X − {Xj}, we

have ∀Xk : (Xk �Xj ∨Xk ∼� Xj) ⇒ γi(Xk) �k γi+1(Xk) by Definition 9. Therefore,

we have γi ≻• γi+1 with Xj as the witness.

Case 2: (I-flip) γi and γi+1 differ in the value of variables Xj and Xk1
, Xk2

, · · ·Xkl
,

and Xj � Xk1
, Xj � Xk2

, · · · , Xj �Xkl
, such that γi(Xj) ≻j γi+1(Xj). With Xj as the

witness, the first clause in the definition of γi ≻• γi+1 is satisfied (γi(Xj) ≻j γi+1(Xj)).

By Definition 4, γi(Xk) = γi+1(Xk) for all Xk ∈ X − {Xj, Xk1
, Xk2

, · · · , Xkl
}. In

particular, γi(Xk) = γi+1(Xk) for all Xk such that Xk �Xj ∨ Xk ∼� Xj, which means

that ∀Xk : (Xk �Xj ∨Xk ∼� Xj) ⇒ γi(Xk) �k γi+1(Xk) by Definition 9. Therefore,

we have γi ≻• γi+1 with Xj as the witness by Definition 101.

From Cases 1 and 2, γi ≻• γi+1 for every pair of consecutive outcomes γi and γi+1.

Using the fact that ≻• is transitive when � is an interval order (Theorem 1), we have

α ≻• β (by Definition 10) when � is an interval order. Hence, ≻w ⊆ ≻• when � is an

interval order.

1Note that we do not care how γi and γi+1 compare w.r.t. variables {Xk1
, · · · , Xkl

} that are less
important than witness Xj .
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The next observation follows from the fact that ≻• holds for each pair of consecutive

outcomes in a flipping sequence supporting α ≻w β.

Observation 1. (≻•)⋆ =≻w, where (≻•)⋆ is the transitive closure of ≻•.

Note that this observation holds even when � is not an interval order. However,

it does not yield a computationally efficient algorithm for dominance testing in general

because computing (≻•)⋆ is in itself an expensive operation.

We now investigate the relationship between ≻◦ and ≻•. In Example 1, α, β, γ

forms a flipping sequence from γ to α, resulting in α ≻◦ γ (by Brafman et al.’s definition

of a flipping sequence). However, α 6≻• γ. α ≻◦ β implies that there exists a flipping

sequence from α to β such that ≻• holds for each pair of consecutive outcomes in the

sequence. Hence, it follows that when ≻• is transitive, ≻◦⊆≻•. On the other hand,

Example 12 shows that it is possible that α ≻• β but α 6≻◦ β, and hence, the other side

of the inclusion does not hold. This leads us to the following observation.

Observation 2. ≻• 6⊆≻◦ and ≻◦ 6⊆≻• in general; but ≻◦⊆≻• when � is an interval

order.

3.1.4 Concluding Remarks

Dominance testing for conditional preference languages such as CP-nets, TCP-nets

and their extensions have been shown to be computationally hard [Goldsmith et al.,

2008]. Although polynomial time dominance testing algorithms exist for restricted

classes of CP-/TCP-nets, there are no known polynomial time dominance testing al-

gorithms for any preference language that allows expression of relative importance of

variables. We study one such language, LTUP , an unconditional fragment of LTCP , the

language of TCP-nets. Dominance testing in LTUP amounts to evaluating the satisfia-

bility of a logic formula that can be carried out in polynomial time.
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Our results lead to two natural questions that would be interesting to explore: (1)

whether dominance testing using a search for flipping sequences can be achieved in

polynomial time in the case of unconditional preferences; and (2) whether the existing

large body of work on efficient SAT solvers [Zhang and Malik, 2002] can be leveraged to

perform efficient dominance testing for other more expressive preference languages.

3.2 Dominance Testing via Model Checking

Dominance testing, the problem of determining whether an outcome is preferred

over another, is of fundamental importance in many applications. Hence, there is a need

for algorithms and tools for dominance testing with CP-nets and TCP-nets, which are

widely studied languages for representing and reasoning with preferences. One of the

issues in reasoning with CP-nets and TCP-nets is that dominance testing is PSPACE-

complete. Moreover, with the exception of special cases such as CP-nets with tree

or polytree structured conditional dependencies [Boutilier et al., 2004, Brafman et al.,

2006], dominance testing has been shown to be PSPACE-complete [Goldsmith et al.,

2008]. Section 3.1 showed a way to alleviate this hardness by considering a language

for representing only unconditional preferences. It also introduced a dominance relation

that can be computed in polynomial time, established its properties and compared it

with its counterparts in TCP-nets.

In this chapter, we present another approach for dealing with the complexity of domi-

nance testing in TCP-nets – by making use of the state-of-the-art tools in model checking

to compute dominance. Although dominance testing is hard, experience with other hard

problems such as boolean satisfiability (SAT) suggests that it is often possible to realize

acceptable performance in practice for such hard problems, using implementations that

take advantage of specialized data structures and algorithms.

We reduce dominance testing in TCP-nets to reachability analysis in a graph of
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outcomes. We provide an encoding of TCP-nets in the form of a Kripke structure for

CTL. We show how to compute dominance using NuSMV, a model checker for CTL.

We present results of experiments that demonstrate the feasibility of our approach to

dominance testing.

Hence, this section explores a novel approach to dominance testing that leverages the

state-of-the-art techniques in model checking [Clarke et al., 1986, Queille and Sifakis,

1982]. Our approach reduces dominance testing to reachability analysis in a graph of

outcomes. Specifically, we formalize the ceteris paribus semantics of preferences in terms

of a direct and succinct representation of preference semantics using Kripke structures

[Clarke et al., 2000] that encode preferences over outcomes as reachability within a

graph of outcomes. In this setting, we reduce dominance testing to the satisfiability of

corresponding temporal formulas in the model. We provide a translation from TCP-

nets to the Kripke model specification language of a widely used model checker NuSMV

[Cimatti et al., 2002]. We demonstrate how a proof of dominance can be automatically

generated whenever the dominance holds. This approach allows us to take advantage of

the state-of-the-art model checkers that provide optimized computation of dominance

using specialized data structures and algorithms. We present results of experiments that

demonstrate the feasibility of this approach to dominance testing: Dominance queries

over preference specifications involving 20 or more variables are answered within a few

seconds. While the discussion here is restricted to TCP-nets, our approach to dominance

testing via model checking can be used for any preference formalism whose semantics is

given in terms of properties over a graph of outcomes.

3.2.1 Dominance Testing via Model Checking

We now proceed to describe our approach to dominance testing using model checking.

Ceteris paribus semantics induces a graph, the induced preference graph [Boutilier et al.,

2004, Brafman et al., 2006]; and an outcome α is said to dominate another outcome β
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if there exists a path consisting of successively worsening outcomes in this graph from α

to β. The key observation behind our approach is that dominance of α over β is given

in terms of the reachability of the worse outcome (β) from the preferred outcome (α) in

the induced preference graph [Boutilier et al., 2004, Brafman et al., 2006] that captures

the preference semantics.

Definition 12. Given a TCP-net N over a set of variables V , the induced preference

graph δ(N) = G(A,E) is constructed as follows. The nodes A correspond to the set of

all possible outcomes, i.e., complete assignments to all variables in V , and each directed

edge (α, β) ∈ E corresponds to either a V-flip or an I-flip as dictated by the chosen

semantics (Definitions 3, 4).

An outcome α dominates β with respect to N if and only if the node corresponding

to β in δ(N) is reachable from α. Note that δ(N) is guaranteed to be acyclic because it

represents an irreflexive and transitive dominance relation.

A

B C

0 ≻A 1

A = 0 : 0 ≻C 1A = 0 : 1 ≻B 0

A = 1 : 0 ≻B 1 A = 1 : 1 ≻C 0

(a) (b)

Figure 3.4 (a) TCP-net N ; (b) Transitive Reduction of δ(N)

Example. Consider a TCP-net N of three binary variables, namely {A,B,C} as shown

in Figure 3.4(a). ≻B and ≻C depend on the valuations A (solid directed edges), and

the nodes are annotated with the respective CPTs. B � C is denoted by a dotted edge

from B to C. Figure 3.4(b) shows the transitive reduction of the corresponding induced

preference graph δ(N).
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The above formulation of dominance testing in a TCP-net N in terms of verifying

reachability properties in the corresponding induced preference graph δ(N) allows us to

take advantage of the state-of-the-art approaches to model checking. This approach to

dominance testing involves addressing two questions: (a) How to encode the induced

preference graph δ(N) as an input graph to a model checker (we use NuSMV [Cimatti

et al., 2002]), and (b) How to express a query regarding the dominance of an outcome

(α) with respect to another (β) in the form of a test of reachability of β from α in the

corresponding graph.

The preference variables of the TCP-net are mapped to the state variables of the

model in a model checker. The V-flips and the I-flips (Definitions 3 and 4) are directly

encoded as transitions in the Kripke structures for the language of the model checker.

This ensures that the state space explored by the model checker corresponds to δ(N).

Dominance queries over the TCP-nets are then modeled as temporal logic properties

(in CTL [Clarke et al., 2000]) over the state space of the model. This allows us to take

advantage of all the specialized data structures (e.g., BDDs) and algorithms available

in the model checking engine to efficiently verify the satisfiability of the corresponding

temporal logic properties. In order to check whether an outcome α dominates the

outcome β, we query the model checker with a CTL formula ϕ such that there is a

model of ϕ if and only if α dominates β. If the dominance does hold, then the model

checker can be used to obtain a proof of dominance, i.e., a worsening flipping sequence

from α to β.

3.2.2 Kripke Structure Encoding of TCP-net Preferences

We now proceed to describe how TCP-net2 preferences can be encoded in a Kripke

structure [Clarke et al., 2000].

2To simplify the presentation, we will restrict our discussion to TCP-nets over binary variables,
although our approach can be extended to variables with other domains as well.
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Definition 13 (Kripke Structure). A Kripke structure is a tuple 〈S, S0, T, L〉 where S is

a set of states described by the valuations of a set of propositional variables P , S0 ⊆ S is

a set of initial states, T ⊆ S×S is a transition relation inducing directed edges between

states such that ∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ T , and L : S → 2P is a labeling function

such that ∀s ∈ S : L(s) is the set of propositions that are true in s.

Given a TCP-net N over a set V = {X1, . . .Xn} of variables, a Kripke structure KN

corresponding to the induced preference graph δ(N) can be constructed as follows.

1. The states S are defined by the valuations of propositions P = V ∪ {hi|Xi ∈ V },

where each hi is a binary variable indicating whether or not the value of Xi can

change in a transition,

hi =






0 if value of Xi must not change in a

transition in the Kripke structure KN

1 otherwise

(1)

The change variables hi defined above will be used, as will be shown later, to

construct the state space S of the Kripke structure KN that encodes the induced

preference graph δ(N). Note that each outcome α in δ(N) corresponds to a set

Sα = {s|s↓V = α} of states, where s↓V denotes the projection of a state s described

by P onto the set of variables V ⊆ P . By this construction, the various states in

Sα differ precisely in the valuations of the change variables, and since there are |V |

change variables, |Sα| = 2|V |. The start state(s) S0 of KN are specified based on

the dominance query (as described later); and the labeling function L is defined

such that for any state s ∈ S, L(s) corresponds to the set of variables that are

‘true’ in s.

2. The transition relation T is defined as follows, with s(Xi) and s′(Xi) denoting the

valuation of the corresponding variable Xi in states s and s′ respectively. For any
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two states s, s′ ∈ S, define (s, s′) ∈ T (denoted s→ s′) by the rules:

i. (V-flip)

s→ s′ ⇐






∃Xi ∈ V : s(hi) = 1 ∧ s(Xi) ≻i s
′(Xi)

∧∀Xj ∈ V \ {Xi} : s(hj) = 0∧

s(Xj) = s′(Xj)

ii. (I-flip)

s→ s′ ⇐






∃Xi ∈ V : s(hi) = 1 ∧ s(Xi) ≻i s
′(Xi)

∧∃W ⊆ V \ {Xi} : ∀Xj ∈W : Xi �Xj

∧∀Xk ∈ V \ (W ∪ {Xi}) :

s(hk) = 0 ∧ s(Xk) = s′(Xk)

iii. s→ s′ ⇐ ∀Xi ∈ V : s(Xi) = s′(Xi)

In the above encoding of the Kripke structure, transition rules 2(i)−(iii) are exhaus-

tive, thus satisfying the requirement that in a Kripke structure all states should have

outgoing transitions. Transitions effected through the rules 2(i) and 2(ii) correspond to

valid worsening V-flips and I-flips respectively according to Wilson’s semantics3 (Defini-

tion 4). Therefore, all possible edges E corresponding to V-flips and I-flips of the induced

preference graph δ(N) = G(A,E) are captured by the above transition relation. 2(iii)

allows only transitions from a state s to those states s′ that agree with s on all variables

in V . We now establish the main theorem which forms the basis for our approach to

dominance testing via model checking.

Remark. The definition of a V- or an I- flip from α to β (Definitions 3 and 4) requires the

equality of α and β with respect to some of the variables in V . Since NuSMV does not

allow the specification of a transition by constraining the destination state variables,

3Brafman et al. semantics (Definition 3) can be similarly encoded with minor changes to the defini-
tion of the transition relation 2(ii) in the Kripke structure.
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we use hi to control the allowed changes to each variable Xi ∈ V . Observe that the

variables hi are allowed to take any value in the destination state of any transition (see

rules 2(i)− (iii)). This allows the model checker to explore all possible V-/I-flips from

any given outcome.

Theorem 5. Given a TCP-net N , and the corresponding Kripke structure KN =

〈S, S0, T, L〉 (constructed from δ(N) = G(A,E) as described above),

1. ∀α, β : (α, β) ∈ E ⇒ ∃s→ s′ : s↓V = α ∧ s′↓V = β

2. ∀s, s′ ∈ S : s→ s′ ∧ s↓V 6= s′↓V ⇒ ∃(α, β) ∈ E

Proof. For the first part, let (α, β) ∈ E. Since δ(N) is a cycle-free graph over distinct

outcomes, α 6= β. Further, (α, β) ∈ E requires the existence of either a V-flip or I-flip

from α to β by Definitions 4 and 12. By construction of the Kripke structure, there

exist sets Sα and Sβ of states such that ∀sα ∈ Sα : sα
↓V = α and ∀sβ ∈ Sβ : sβ

↓V = β

respectively. Therefore, ∀sα ∈ Sα, sβ ∈ Sβ : (sα
↓V , s

β
↓V ) ∈ E. By the definition of the

valuations of the change variables in Equation (1) and the transition rules 2(i) and 2(ii),

it follows that ∃sα ∈ Sα, sβ ∈ Sβ : sα → sβ.

For the second part, let s, s′ ∈ S : s → s′ ∧ s↓V 6= s′↓V . Since s 6= s′, 2(iii) is not

applicable, and hence, it must be the case that the conditions in the right hand side of

2(i) or 2(ii) is satisfied. This in turn implies that the transition s→ s′ is due to a V-flip

or an I-flip, i.e., (s↓V , s
′
↓V ) ∈ E.

3.2.2.1 Encoding KN in NuSMV

For the TCP-net N specified in Figure 3.4, the encoding of the corresponding Kripke

structure δ(N) that is provided as input to the NuSMV model checker [Cimatti et al.,

2002] is shown in Figure 3.5.
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The VAR construct declares the binary preference variables (a, b, c) and the corre-

sponding change variables (ha, hb, hc), and ASSIGN defines the transition rules for each

variable in the form of the guards and corresponding next state valuations (as per rules

2(i) − (iii) in our construction). For example, the V-flips corresponding to variable b

when a = 0 is encoded as follows: “if b = 1&a = 0&ha = 0&hb = 1&hc = 0 then b = 0

in the next state”. The I-flips induced by b � c are specified by guarded transitions

allowing (1) b’s valuation to change regardless of whether c’s valuation changes or not,

and (2) c’s valuation to change in a transition whenever b’s valuation changes.

3.2.2.2 Computing Dominance

Given a Kripke structure KN that encodes the induced preference graph of a TCP-

net N , determining whether α dominates β in N can be reduced to verifying appropriate

temporal properties in CTL (see [Clarke et al., 2000]). Specifically, the CTL formula

ϕα → EFϕβ is used to check whether α dominates β. In the formula, ϕα and ϕβ are

conjunctions of the assignments to the variables in V in α and β respectively. A state

in the Kripke structure is said to satisfy the above formula if and only if when the state

satisfies ϕα (i.e., valuations of variables of V in that state correspond to those in α),

there exists a path or a sequence of transitions sα = s1 → s2 → · · · → sn = sβ (s.t.

sα
↓V = α and sβ

↓V = β) such that n > 1. In short, a state in the Kripke structure KN

corresponding to δ(N) satisfies the above CTL formula if and only if α dominates β

with respect to N (Theorem 5). We will use the model checker NuSMV to verify the

satisfiability of a CTL formula ϕα → EFϕβ.

Example. For the TCP-net N in Figure 3.4, the dominance of α = 〈a = 0, b = 1, c = 1〉

over β = 〈a = 1, b = 0, c = 0〉 corresponds to the satisfiability of the CTL formula

ϕ : (a = 0&b = 1&c = 1 → EF(a = 1&b = 0&c = 0)). Note that NuSMV asserts that

ϕ is verified only if every initial state satisfies ϕ. Therefore, we initialize Xi to α(Xi)
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to restrict the start states to Sα in the encoded Kripke structure. We also initialize

all the change variables hi to 0, so that transitions corresponding to all possible V-flips

and I-flips from α are explored by the model checker. In NuSMV, the satisfiability of

ϕ can be verified by the specification SPECϕ, and the verification returns ‘true’ in our

example, thereby establishing that the outcome α = 〈a = 0, b = 1, c = 1〉 dominates

β = 〈a = 1, b = 0, c = 0〉.

3.2.2.3 Extracting a Proof of Dominance

We can use the NuSMV model checker to obtain a proof that an outcome α dominates

another outcome β (i.e., a worsening flipping sequence from α to β) as follows. Suppose

α dominates β. This implies that the CTL formula ϕ : ϕα → EFϕβ holds. Hence, in this

case if we provide the formula ¬ϕ (i.e., ¬(ϕα → EFϕβ)) as input to the model checker,

the model checker will return ‘false’, and provide us with the sequence of states (as

below) corresponding to the worsening flipping sequence from α to β.

In our example, since α = 〈a = 0, b = 1, c = 1〉 dominates β = 〈a = 1, b = 0, c = 0〉,

when input the formula

SPEC ! (a = 0 & b = 1 & c = 1 -> EF (a = 1 & b = 0 & c = 0))

NuSMV returns the sequence: (0, 1, 1)→ (0, 0, 0)→ (1, 0, 0) as shown below.

-> State: 1.1 <-

a = 0

b = 1

c = 1

ha = 0

hb = 0

hc = 0

-> State: 1.2 <-

hb = 1

hc = 1

-> State: 1.3 <-

b = 0

c = 0

ha = 1

hb = 0

hc = 0

-> State: 1.4 <-

a = 1

ha = 0

In the above, the transition from state 1.1 to 1.2 is effected by transition rule 2(iii);

that from state 1.2 to 1.3 by rule 2(ii); and that from state 1.3 to 1.4 by rule 2(i).
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3.2.3 Summary and Discussion

We have described, to the best of our knowledge, the first practical solution to the

problem of determining whether an outcome dominates another with respect to a set

of qualitative preferences. Our approach relies on a reduction of the dominance testing

problem to reachability analysis in a graph of outcomes. We have provided an encoding

of TCP-nets in the form of a Kripke structure for CTL.

We have shown how to: (a) directly and succinctly encode preference semantics as a

Kripke structure; (b) compute dominance by verifying CTL temporal properties against

this Kripke structure; and (c) generate a proof of dominance. We have shown how to

compute dominance using NuSMV, a model checker for CTL. The results of our experi-

ments demonstrate the feasibility of this approach to dominance testing. This approach

to dominance testing via model checking allows us to take advantage of continuing ad-

vances in model-checking.

Although our treatment focused on acyclic CP-nets and TCP-nets, our approach can

be applied to any preference language for which the semantics is given in terms of the

satisfiability of graph properties (including GCP-nets, cyclic CP-nets and the language

due to Wilson). Our approach can also be used for reasoning tasks other than dominance

testing such as finding whether a given outcome is the least (or most) preferred among

all the outcomes.

In our experiments we have reported running times for dominance testing that are

intended merely to demonstrate the feasibility of our approach. The running times are

averages taken over multiple dominance queries over sets of randomly generated prefer-

ence networks. The running time could depend on many factors such as the structure of

the preference network, the number of preference variables and the CPT size, in addition

to the dominance query itself. Hence, it remains to be studied how the running times

and memory usage of our solution approach are affected by such factors.
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Although we have used the NuSMV model checker in our implementation, any model

checker that accepts a Kripke structure as input can be used to realize our approach

to dominance testing. Hence, it should be possible to take advantage of specialized

techniques that have recently been developed to improve the performance of model

checkers [Kahlon et al., 2009, Cook and Sharygina, 2005, Ciardo et al., 2001, Wang,

2000, Biere et al., 1999].
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MODULE main

VAR a:{0,1}; b:{0,1}; c:{0,1};

ha:{0,1}; hb:{0,1}; hc:{0,1};

ASSIGN --init(a):=1; init(b):=1; init(c):=1;

init( ha):=0; init( hb):=0; init( hc):=0;

next(a) :=

case -- conditional preferences:

a=0 & hc=0 & hb=0 & ha=1 : 1;

1 : a;

esac;

next(b) :=

case -- conditional preferences:

b=1 & a=0 & hc=0 & hb=1 & ha=0 : 0;

b=0 & a=1 & hc=0 & hb=1 & ha=0 : 1;

-- relative importance: b imp. than c

b=1 & a=0 & hb=1 & ha=0 : 0;

b=1 & a=0 & hb=0 & ha=0 : 1;

b=0 & a=1 & hb=1 & ha=0 : 1;

b=0 & a=1 & hb=0 & ha=0 : 0;

1 : b;

esac;

next(c) :=

case -- conditional preferences:

c=0 & a=0 & hc=1 & hb=0 & ha=0 : 1;

c=1 & a=1 & hc=1 & hb=0 & ha=0 : 0;

-- relative importance: c less imp. than b

((b=1 & a=0) | (b=0 & a=1))

& hb=1 & ha=0 & hc=1 : !c;

((b=1 & a=0) | (b=0 & a=1))

& hb=1 & ha=0 & hc=0 : c;

1 : c;

esac;

Figure 3.5 Listing of Kripke encoding in NuSMV
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CHAPTER 4. Preference Reasoning for Compositional

Systems: Theory & Algorithms

In this chapter, we turn our attention to the problem of reasoning with multi-

attribute preferences for compositional systems. We develop a formalism for repre-

senting intra-attribute and relative importance preferences over multiple attributes of

the components, and reasoning with them to compare compositions using a dominance

preference relation. Further, we develop a set of algorithms to identify the most preferred

compositions, given a functional specification (functional requirement), user preferences

over the attributes of the components (non-functional requirements), a repository of

available components, and a functional composition algorithm.

4.1 Preference Formalism

Given a compositional system with a repository of components described by at-

tributes X and preferences ({≻i},�) over them, we are interested in reasoning about

preferences over different compositions. Note that based on preferences {≻i} and �, one

can make use of existing formalisms such as TCP-nets [Brafman et al., 2006] to select

the most preferred components. However, the problem of comparing compositions (as

opposed to comparing components) with respect to the attribute preferences is compli-

cated by the fact that the valuation of a composition is a function of the valuations of

its components. Our approach to developing the preference formalism is as follows.

First, given a composition and the valuations of its components with respect to the
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attributes, we obtain the aggregated valuation of the composition with respect to each

attribute as a function of the valuations of its components. Next, we define preference

relations to compare the aggregated valuations of two compositions with respect to

each attribute. Finally, we build a dominance preference relation ≻d that qualitatively

compares any two compositions with respect to their aggregated valuations across all

attributes.

4.1.1 Aggregating Attribute Valuations across Components

In order to reason about preferences over compositions, it is necessary to obtain the

valuation of a composition with respect to each attribute Xi in terms of its components,

using some aggregation function Φi. There are several ways to aggregate the preference

valuations attribute-wise across components in a composition. The aggregation function

Φi computes the valuation of a composition with respect to an attribute Xi as a function

of the valuations of its components.

Remark. In the compositional systems considered here, we assume that the valuation

of a composition with respect to its attributes is a function of only the valuations of its

components. In other words, if C = W1 ⊕W2 ⊕ . . .⊕Wn, then VC is a function of only

{VW1
, VW2

, . . . , VWn
}. However, in the most general setting, the aggregation functions Φi

need to take into account, in addition to the valuations of the components themselves,

the structural or functional details of a composition encoded by ⊕ (e.g., the reliability

of a Web service composition depends on whether the service components are composed

in a series or parallel structure; the power rating of an embedded system depends on the

details of the circuitry in addition to the power ratings of the components themselves).

Definition 14 (Aggregation Function). The aggregation function on the set of subsets

of possible valuations (Di) of attribute Xi is

Φi : P(Di) −→ F (Xi)
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where F (Xi) denotes the range of the aggregation function.

Aggregation with respect to an attribute Xi amounts to devising an appropriate

aggregation function Φi that computes the valuation of a composition in terms of the

valuations of its components for Xi. The range F (Xi) of Φi depends on the choice of

aggregation function. Some examples of aggregation functions are given below.

1. Summation. This is applicable in cases where an attribute is real-valued and

represents some kind of cost. For example, the cost of a shopping cart is the sum

of the costs of the individual items it includes. In our running example, the total

number of credits in a POS consisting of a set of courses is the sum of the credits

of all the courses it includes. That is, if S is the set of credit hours (valuations of

the courses with respect to the attribute C) of courses in a POS, then

ΦC(S) := {Σs∈Ss}

2. Minimum/Maximum. Here, the valuation of a composition with respect to an

attribute is the worst, i.e., the minimum among the valuations of its components.

This type of aggregation is a natural one to consider while composing embedded

systems or Web services. For example, when putting together several components

in an embedded system, the system is only as secure (or safe) as its least secure

(or safe) component.

Φi(S) := {mins∈Ss}

Analogously, one could chose as the valuation of the composition the maximum

(best) among the valuations of its components. Such an aggregation function

may be useful in applications such as parallel job scheduling, where the maximum

response time is used to measure the quality of a schedule.
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3. Best/Worst Frontier. In some settings, it is possible that the intra-attribute

preference over the values of an attribute is a partial order (not necessarily a

ranking or a total order). Hence, it may not be possible to compute the valuation

of a composition as the best or worst among the valuations of its components

because a unique maximum or minimum may not exist. For example, it may be

useful to compute the valuation of a composition as the minimal set of valuations

among the valuations of its components, which we call the worst frontier. The

worst frontier represents the worst possible valuations of an attribute Xi with

respect to ≻i, i.e., the minimal set1 among the set of valuations of the components

in a composition.

Definition 15 (Aggregation using Worst Frontier). Given a set S of valuations of an

attribute Xi, the worst frontier aggregation function is defined by

∀S ⊆ Di : Φi(S) := {v : v ∈ S ∧ ∄u ∈ S : v ≻i u}

In our running example (see Section 1.1.2), the user would like to avoid courses not in

his interest area and professors whom he is not comfortable with. That is, a program of

study is considered only as good as the least interesting areas of study it covers, and the

set of professors he is least comfortable with. Hence, worst frontier aggregation function

is chosen for the breadth area and instructor attributes.

Example 2. The “worst possible” valuations of attributes A and I for the programs of

study (compositions) P1, P2 and P3 with respect to ≻A and ≻I are ({FM, TH}, {White,

Harry}), ({DB,NW}, {Jane, Tom}) and ({CA, SE}, {Harry,White}) respectively.

These sets correspond to the “worst frontiers” of the respective attributes. The different

areas of focus covered in the POS P2 are {FM,AI,DB,NW, TH}, and the worst frontier

1Note that if ≻i is a total order, then worst frontier represents the minimum or lowest element in
the set with respect to the total order.
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of this set is ΦA({FM,AI,DB,NW, TH}) = {DB,NW} because AI ≻A DB,FM ≻A

DB, TH ≻A NW . Similarly the set of instructors in P2 are {Tom,Gopal, Bob, Jane},

and hence we have ΦI({Tom,Gopal, Bob, Jane}) = {Jane, Tom} because Bob ≻I Jane

and Gopal ≻I Tom. For attribute C, the aggregation function computes the sum of

credits of the constituent courses in a POS, so for P2, ΦC({4, 3, 4, 2, 3, 3}) = 4 + 3 + 4 +

2 + 3 + 3 = 19. ⋄

We note that other choices of the aggregation function can be accommodated in our

framework (such as average or a combination of best and worst frontier sets), and that

the above is only a representative list of choices.

Proposition 6 (Indifference of Frontier Elements). Consider an attribute Xi, whose

valuations are aggregated using the best or worst frontier aggregation function. For any

A ∈ F (Xi), ∀u, v ∈ A, u ∼i v.

Proof. Follows from Definition 15 (or the analogous definition of a best frontier) and a

well known result due to Fishburn in [Fishburn, 1985].

Definition 16 (Valuation of a Composition w.r.t Xi using worst frontier aggregation).

The valuation of a component W with respect to an attribute Xi is denoted as VW (Xi) ∈

Di. The valuation of a composition of two components W1 and W2 with respect to an

attribute Xi, each with valuation VW1
(Xi) and VW2

(Xi) respectively, is given by

VW1⊕W2
(Xi) := Φi(VW1

(Xi) ∪ VW2
(Xi))

Example 3. Consider P2 = CS501⊕ CS502⊕ CS505⊕ CS506⊕ CS509⊕ CS510 in

our running example (see Section 1.1.2).

VP2
(A) = ΦA(VCS501(A) ∪ VCS502(A) ∪ VCS505(A) ∪ VCS506(A) ∪ VCS509(A) ∪ VCS510(A))

= ΦA({Tom} ∪ {Gopal} ∪ {Bob} ∪ {Bob} ∪ {Jane} ∪ {Tom})

= ΦA({Tom,Gopal, Bob, Jane})

= {Tom, Jane}



www.manaraa.com

54

⋄

It must be noted that VW1⊕W2
(Xi) = VW2⊕W1

(Xi), because the valuations of compo-

sitions are subsets of the union of individual component valuations.

4.1.2 Comparing Aggregated Valuations

Having obtained an aggregated valuation with respect to each attribute, we next

proceed to discuss how to compare aggregated valuations attribute-wise. We denote

the preference relation used to compare the aggregated valuations for an attribute Xi by

≻′
i. In the simple case when an aggregation function Φi with respect to an attribute Xi

returns a value in Di (F (Xi) = Di), the intra-attribute preference ≻i can be (re)used to

compare aggregated valuations, i.e., ≻′
i =≻i. Other choices of ≻′

i can be considered as

long as ≻′
i is a partial order. In order to obtain a strict preference relation, we require

irreflexivity, and to obtain a rational preference relation, we require transitivity2.

For worst frontier-based aggregation (Definition 15), we present a preference relation

that uses the following idea: Given two compositions with different aggregated valuations

(worst frontiers) A,B with respect to an attribute Xi, we say that A is preferred to B

if for every valuation of Xi in B, there is some valuation in A that is strictly preferred.

Definition 17 (Preference over Worst Frontiers). Let A,B ∈ F (Xi) be two worst fron-

tiers with respect to attribute Xi. We say that valuation A is preferred to B with respect

to Xi, denoted by A≻′
iB, when all elements in B are dominated by some element in A.

∀A,B ∈ F (Xi) : A≻′
iB ⇔ ∀b ∈ B, ∃a ∈ A : a ≻i b

Example 4. In our running example (see Section 1.1.2), we have {FM, TH}≻′
A{DB,

NW} because FM ≻A DB and TH ≻A NW . ⋄

2Any preference relation, including the one that compares only the uncommon elements of two sets
can be used, provided it is irreflexive and transitive.
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Given a preference relation over a set of elements, there are several ways of obtaining

a preference relation over subsets of elements from the set (see [Barbera et al., 2004] for

a survey on preferences over sets). As mentioned earlier, any such preference relation

can be used in our setting, provided it is irreflexive and transitive.

Proposition 7 (Irreflexivity of ≻′
i). A ∈ F (Xi)⇒ A 6 ≻′

i A.

Proof. ∀a, b ∈ A, a ∼i b (follows from Proposition 6)

Proposition 8 (Transitivity of ≻′
i). If A,B,C ∈ F (Xi), then A≻′

iB∧B≻
′
iC ⇒ A≻′

iC.

Proof. Immediate from Definition 17.

Definition 18. Let A,B ∈ F (Xi). We say that valuation A is at least as preferred to

B with respect to Xi, denoted �′
i iff

A�′
iB ⇔ A = B ∨ A≻′

iB

Proposition 9. �′
i is reflexive, transitive.

Proof. Follows from the facts that = is reflexive and transitive, and ≻′
i is irreflexive and

transitive.

Definition 19 (Complete Valuation). The complete valuation or outcome or assignment

of a composition C is defined as a tuple VC := 〈A1, . . . Am〉, where Ai = VC(Xi) ∈ F (Xi).

The set of all possible valuations or outcomes is denoted as

m∏

i=1

F (Xi).
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Example 5. In case of our example in Section 1.1.2:

VP1
= 〈ΦA({FM,AI, TH}),ΦI({Tom,Gopal,Harry,White, Jane}),

ΦC({4, 3, 2, 3, 3, 3})〉

= 〈{FM, TH}, {White,Harry}, {18}〉

VP2
= 〈ΦA({FM,AI,DB,NW, TH}),ΦI({Tom,Gopal, Bob, Jane}),

ΦC({4, 3, 4, 2, 3, 3})〉

= 〈{DB,NW}, {Tom, Jane}, {19}〉

VP3
= 〈ΦA({FM,AI, CA, SE, TH}),ΦI({Harry,White, Tom, Jane}),

ΦC({2, 3, 3, 2, 3, 3})〉

= 〈{CA, SE}, {Harry,White}, {16}〉

⋄

4.1.3 Dominance: Preference over Compositions

In the previous sections, we have discussed how to evaluate and compare a composi-

tion with respect to the attributes as a function of its components. In order to identify

preferred compositions, we need to compare compositions with respect to their aggre-

gated valuations over all attributes, based on the originally specified intra-attribute and

relative importance preferences. We present a specific dominance relation for performing

such a comparison.

Definition 20 (Dominance). Dominance ≻d is a binary relation defined as follows: for

all U3,V ∈
m∏

i=1

F (Xi)

U ≻d V ⇔ ∃Xi : U(Xi)≻
′
iV(Xi) ∧

∀Xk : (Xk �Xi ∨Xk ∼� Xi) ⇒ U(Xk)�
′
kV(Xk)

3To avoid excessively cluttering the notation, for a given composition C, we will slightly abuse nota-
tion by using C interchangeably with VC .
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≻′
1⊆ F (D1)×F (D1) ≻′

2⊆ F (D2)×F (D2) ≻′
m⊆ F (Dm)×F (Dm)

F (D1) F (D2) F (Dm)

Φ1 Φ2 Φm

P(D1) P(D2) P(Dm)

≻1⊆ D1 ×D1 ≻2⊆ D2 ×D2 ≻m⊆ Dm ×Dm

D1 = {a1, a2 . . .} D2 = {b1, b2 . . .} Dm = {u1, u2 . . .}

⊲ ⊆ X × X

X = {X1,X2, . . . Xm} . . .

. . .

. . .

≻d⊆
m∏

i=1

F (Di)×
m∏

i=1

F (Di)

Intra-attribute preferencesRelative Importance

User

Input

Compute
aggregated valuations

Compare
compositions

U ≻d V ⇔ ∃Xi ∈ X : U(Xi) ≻
′
i V(Xi) ∧

∀Xk ∈ X : (Xk ⊲ Xi ∨Xk ∼⊲ Xi)⇒ U(Xk) �
′
k V(Xk)

aggregated valuations
Compare

Layer 1

Layer 2

(Aggregation)

(Dominance)

Figure 4.1 Dominance: Preference over compositions
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In Definition 20, we call the attribute Xi as the witness of the relation. The dom-

inance relation ≻d is derived from and respects both the intra-attribute preferences

(≻i) as well as the relative importance preferences (�) asserted by the user. Figure 4.1

graphically illustrates how dominance is derived from user-specified preferences. First,

to start with we have user specified preferences, namely intra-attribute (≻i) and relative

importance (�) preferences. Next, from ≻i preferences, the valuations of compositions

with respect to attributes are computed using the aggregation function (Φi). Then the

intra-attribute preference relation to compare the aggregated valuations (≻′
i) is derived

from ≻i. Finally, the global dominance (≻d ) is defined in terms of ≻′
i and �.

The definition of dominance states that a composition U dominates V iff we can find

a witness attribute Xi such that with respect to the intra-attribute preference ≻i, the

valuation of U dominates V in terms of ≻′
i, and for all attributes Xk which the user

considers more important than (�) or indifferent to (∼�) Xi, the valuation of Xk in U

is at least as preferred (�′
i) as the valuation of Xk in V.

Example 6. In our running example (see Section 1.1.2), we have VP2
≻d VP1

with I as

witness and VP1
≻d VP3

with A as witness. If I � A, I � C but A ∼� C then VP2
≻d VP1

and VP2
≻d VP3

with I as witness, but VP1
6 ≻d VP3

and VP3
6 ≻d VP1

. This is because P1

is preferred to P3 with respect to A ({FM, TH}≻′
A{CA, SE}); but P3 is preferred to P1

with respect to C ({16}≻′
C{18}), and neither A nor C is relatively more important than

the other. ⋄

4.1.3.1 Properties of ≻d

We now proceed to analyze some properties of ≻d . First, we show that a partial

feasible composition is not dominated with respect to ≻d by any of its extensions. This

property will be useful in establishing the soundness of algorithms that compute the

most preferred compositions (see Section 4.2.2). Next, we observe that ≻d is irreflexive
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(follows from the irreflexivity of ≻i), and proceed to identify the conditions under which

≻d is transitive. Transitivity of ≻d is a necessary condition for it to be a rational

preference relation [Morgenstern and Von Neumann, 1944, French, 1986a, Mas-Colell

et al., 1995].

Proposition 10. For any partial feasible composition B, there is no feasible extension

B ⊕W that dominates it, i.e., VB⊕W 6 ≻d VB.

Proof. The proof proceeds by showing that with respect to each attribute Xi, VB⊕W (Xi)

6 ≻′
i VB(Xi), thereby ruling out the existence of a witness for VB⊕W ≻d VB. Suppose

that by contradiction, B ⊕W is a feasible extension of B such that VB⊕W ≻d VB. By

Definition 20, VB⊕W ≻d VB requires the existence of a witness attribute Xi ∈ X such

that VB⊕W (Xi)≻′
iVB(Xi), i.e.,

∀b ∈ VB(Xi) ∃a ∈ VB⊕W (Xi) : a ≻i b (4.1)

By Definition 16, we have VB⊕W (Xi) = Φi(VB(Xi) ∪ VW (Xi)). However, by Defini-

tion 15 a ∈ Φi(VB(Xi) ∪ VW (Xi)) ⇒ ∄b ∈ VB(Xi) ∪ VW (Xi) : a ≻i b, which contradicts

Equation (4.1). This rules out the existence of a witness for VB⊕W ≻d VB. Hence,

VB⊕W 6 ≻d VB.

We next proceed to show that ≻d is not necessarily transitive when intra-attribute

and relative importance preference relations are both arbitrary strict partial orders.

Proposition 11. When intra-attribute preferences ≻i as well as relative importance

among attributes � are arbitrary partial orders, U ≻d V ∧ V ≻dZ ; U ≻d Z

Proof. We show a counter example of a compositional system with partially ordered

{≻i},� and compositions U ,V,Z such that U ≻d V, V ≻d Z but U 6≻d Z.

Consider a system with a set of attributes X = {X1, X2, X3, X4}, each with domains

D1 = {a1, b1}, . . .D4 = {a4, b4}. Let the relative importance relation � on X and
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X1

X3

X2

X4

Relative Importance (⊲)

a1 ≻1 b1

a2 ≻2 b2

a3 ≻3 b3

a4 ≻4 b4

Intra-variable preferences

U = 〈{a1}, {a2}, {b3}, {b4}〉

V = 〈{b1}, {a2}, {a3}, {b4}〉

Z = 〈{b1}, {b2}, {a3}, {a4}〉

Figure 4.2 Counter example

Comp. (C) VC(X1) VC(X2) VC(X3) VC(X4)

U a1 a2 b3 b4
V b1 a2 a3 b4
Z b1 b2 a3 a4

Table 4.1 Valuations of U ,V,Z

the intra-attribute preferences ≻1 . . . ≻4 be given by � = {(X1, X3), (X2, X4)} and

≻i= {(ai, bi)}, i = 1, 2, 3, 4 respectively (Figure 4.2). The valuations of U ,V,Z with

respect to the attributes X are given in Table 4.1.

Clearly U ≻d V with X1 as the witness, and V ≻dZ with X2 as the witness. In

addition, note that:

Z(X3)≻
′
3U(X3) (4.2)

Z(X4)≻
′
4U(X4) (4.3)

However, we observe that U 6 ≻d Z:
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a. X1 is not a witness due to X4 ∼� X1 and Equation (4.3).

b. X2 is not a witness due to X3 ∼� X2 and Equation (4.2).

c. X3 is not a witness due to Equation (4.2).

d. X4 is not a witness due to Equation (4.3).

The above proposition shows that the dominance relation ≻d is not transitive when

≻i and � are arbitrary partial orders, when considering worst-frontier based aggregation.

Because transitivity of preference is a necessary condition for rational choice [Morgen-

stern and Von Neumann, 1944, French, 1986a, Mas-Colell et al., 1995], we proceed to

investigate the possibility of obtaining such a dominance relation by restricting �. We

later prove that such a restriction is necessary and sufficient for the transitivity of ≻d .

Definition 21 (Relative Importance as an Interval Order). Relative importance is a

binary relation � on X such that Xi �Xj iff Xi is relatively more important than Xj

that is irreflexive and satisfies the following axiom:

∀Xi, Xj, Xk, Xl ∈ X : (Xi �Xj ∧Xk �Xl)⇒ (Xi �Xl ∨Xk �Xj) (4.4)

Proposition 12 (Transitivity of � [Fishburn, 1985]). � is transitive.

Remarks.

1. Definition 21 imposes an additional restriction on the structure of the relative

importance relation �, over a strict partial order. A strict partial order is just ir-

reflexive and transitive; however, the relative importance relation in Definition 21

should in addition satisfy Equation (4.4), thereby yielding an interval order [Fish-

burn, 1985].
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2. The indifference relation with respect to �, namely ∼� is not transitive. For

example, if there are three attributes X = {X1, X2, X3}, and � = {(X1, X2)}. �

satisfies the condition for an interval order, and we have X1 ∼� X3 and X3 ∼� X2,

but X1 6∼� X2 because X1 �X2.

Recall that from Section 3.1, Propositions 2-5 establish the properties of the domi-

nance relation ≻d . In particular, we showed that ≻d is irreflexive (Proposition 2) and

transitive (Proposition 5), making ≻d a strict partial order (Theorem 1).

4.1.4 Choosing the Most Preferred Solutions

Given a set C = {Ci} of compositions and a preference relation ≻ (e.g., ≻d ) that

allows us to compare any pair of compositions, the problem is to find the most preferred

composition(s). When the preference relations are totally ordered (e.g., a ranking) over

a set of alternative solutions, rationality of choice suggests ordering the alternatives

with respect to the complete preference and choosing the “best” alternative, i.e., the one

that ranks the highest. However, when the preference relation is a strict partial order,

e.g., in the case of ≻d , not every pair of solutions (compositions) may be comparable.

Therefore, a solution that is the most preferred with respect to the preference relation

may not exist. Hence, we use the notion of the non-dominated set of solutions defined

as follows.

Definition 22 (Non-dominated Set). The non-dominated set of elements (alternatives

or solutions or compositions) of a set C with respect to a (partially ordered) preference

relation ≻ (e.g., ≻d ), denoted Ψ≻(C), is a subset of C such that none of the elements

in S are preferred to any element in Ψ≻(C).

Ψ≻(C) = {Ci ∈ C|∄Cj ∈ C : Cj ≻ Ci}

Note that as per this definition, Ψ≻(C) is the maximal set of elements in C with respect

to the relation ≻. It is also easy to observe that C 6= ∅ ⇔ Ψ≻(C) 6= ∅.
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4.2 Algorithms for Computing the Most Preferred

Compositions

We now turn to the problem of identifying from a set of feasible compositions

(that satisfy a pre-specified functionality (ϕ)), the most preferred subset, i.e., the non-

dominated set.

4.2.1 Computing the Maximal/Minimal Subset with respect to a Partial

Order

The straightforward way of computing the maximal (non-dominated) elements in a

set S of n elements with respect to any preference relation ≻ is the following algorithm:

For each element si ∈ S, check if ∃sj ∈ S : sj ≻ si, and if not, si is in the non-dominated

set. This simple “compare all pairs and delete dominated” approach involves computing

dominance with respect to ≻ O(n2) times.

Recently Daskalakis et al. provided an algorithm [Daskalakis et al., 2009] that per-

forms at most O(wn) pairwise comparisons to compute the maximal elements of a set S

with respect to a partial order ≻, where n = |S| and w is the width of the partial order

≻ on S (the size of the maximal set of pairwise incomparable elements in S with respect

to ≻). The algorithm presented in [Daskalakis et al., 2007] finds the minimal elements;

the corresponding algorithm for finding the maximal elements is as follows.

Let T0 = ∅. Let the elements of the set S be x1, x2, · · ·xn. At step t(≥ 1):

• Compare xt to all elements in Tt−1.

• If there exists some a ∈ Tt−1 such that a ≻ xt, do nothing.

• Otherwise, remove from Tt−1 all elements a such that xt ≻ a and put xt into Tt.
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Algorithm 1 ComposeAndFilter(≻, f, ϕ)

1. Find the set C of feasible compositions w.r.t. ϕ using f
2. return Ψ≻(C)

On termination, the set Tn contains all the maximal elements in S, i.e., non-dominated

subset of S with respect to ≻. We make use of the above algorithm to compute the non-

dominated (maximal) subsets (namely, Ψ≻(·)), and the original version of the algorithm

given in [Daskalakis et al., 2007] to compute the worst-frontiers (minimal subsets).

4.2.2 Algorithms for Finding the Most Preferred Feasible Compositions

We proceed to develop algorithms for finding the most preferred feasible composi-

tions, given a compositional system 〈R,⊕, |=〉 consisting of a repository R of pre-existing

components, a user specified functionality ϕ, user preferences {≻i} and � and a func-

tional composition algorithm. Two desirable properties of an algorithm that computes

the non-dominated set of most preferred feasible compositions are soundness and com-

pleteness as defined below.

Definition 23 (Soundness and Completeness). An algorithm A that, given a set C of

feasible compositions, computes a set of feasible compositions SA ⊆ Ψ≻d
(C) is said to be

sound with respect to C. Such an algorithm is complete with respect to C if SA ⊇ Ψ≻d
(C).

Given a compositional system 〈R,⊕, |=〉 consisting of a repository R of pre-existing

components, and a user specified functionality ϕ, the most straightforward approach to

finding the most preferred feasible compositions involves: (a) computing the set C of

functionally feasible compositions using a functional composition algorithm f , and (b)

choosing the non-dominated set according to preferences over non-functional attributes.

Algorithm 1 follows this simple approach to produce the set Ψ≻d
(C) of all non-

dominated feasible compositions, when invoked with the preference relation ≻d , the

functional composition algorithm f and the desired functionality ϕ. Ψ≻d
(C) can be
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computed using the procedure described in Section 4.2.1. Algorithm 1 is both sound

and complete with respect to C.

4.2.3 A Sound and Weakly Complete Algorithm

Note that in the worst case, Algorithm 1 evaluates the dominance relation ≻d be-

tween all possible pairs of feasible compositions C. However, this can be avoided if we

settle for a non-empty subset of Ψ≻d
(C). Note that every solution in such a subset

is guaranteed to be “optimal” with respect to user preferences ≻d . We introduce the

notion of weak completeness to describe an algorithm that computes a set of feasible

compositions, at least one of which is non-dominated with respect to ≻d .

Definition 24 (Weak Completeness). An algorithm A that, given a set C of feasible

compositions, computes a set SA of feasible compositions is said to be weakly complete

with respect to C if Ψ≻d
(C) 6= ∅ ⇒ SA ∩Ψ≻d

(C) 6= ∅.

We now proceed to describe a sound and weakly complete algorithm, i.e., one that

computes a non-empty subset of Ψ≻d
(C). The algorithm is based on the following ob-

servation: Solutions that are non-dominated with respect to each of the relatively most-

important attributes are guaranteed to include some solutions that are non-dominated

overall with respect to ≻d as well. Hence, the solutions that are most preferred with

respect to each such attribute can be used to compute a non-empty subset of Ψ≻d
(C).

We proceed by considering solutions that are most preferred with respect to an attribute

Xi.

Definition 25 (Non-dominated solutions w.r.t. attributes). The set Ψ≻′

i
(C) of solutions

that are non-dominated with respect to an attribute Xi is defined as

Ψ≻′

i
(C) = {U | U ∈ C ∧ ∄V ∈ C : V(Xi)≻′

iU(Xi)}.
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Let I ⊆ X be the set of most important attributes with respect to �, i.e., I =

Ψ�(X ) = {Xi|∄Xj ∈ X : Xj � Xi}. Clearly, I 6= ∅ because there always exists a non-

empty maximal set of elements in the partial order �. The following proposition states

that for every Xi ∈ I, at least one of the solutions in Ψ≻′

i
(C) is also contained in Ψ≻d

(C).

Proposition 13. ∀Xi ∈ I : Ψ≻d
(C) 6= ∅ ⇒ Ψ≻′

i
(C) ∩Ψ≻d

(C) 6= ∅.

Proof. Let Xi ∈ I and U ∈ Ψ≻′

i
(C). There are two possibilities: U ∈ Ψ≻d

(C) and

U /∈ Ψ≻d
(C). If U ∈ Ψ≻d

(C), then there is nothing left to prove.

Suppose that U /∈ Ψ≻d
(C). Then we show that ∃V 6= U such that V ∈ Ψ≻′

i
(C) ∩

Ψ≻d
(C).

U ∈ Ψ≻′

i
(C) ∧ U /∈ Ψ≻d

(C)⇒ ∃V ∈ Ψ≻d
(C) : V ≻d U .

By Definitions 20 and 25, it follows that ∄V ∈ Ψ≻d
(C) : V(Xi)≻′

iU(Xi). Hence, Xi

cannot be a witness for V ≻d U . Now there are two cases to consider.

Case 1: U(Xi)≻′
iV(Xi).

Let attribute Xj 6= Xi be a witness for V ≻d U . Since Xi ∈ I, (Xi � Xj) ∨ (Xi ∼�

Xj). It therefore follows that V(Xi)�
′
iU(Xi), which contradicts our assumption that

U(Xi)≻′
iV(Xi). Hence, U(Xi) 6 ≻′

i V(Xi).

Case 2: U(Xi)∼′
iV(Xi).

Let attribute Xj 6= Xi be a witness for V ≻d U . Since Xi ∈ I, (Xi�Xj)∨(Xi ∼� Xj).

From Definition 20, V ≻d U only if V(Xi)�
′
iU(Xi). Because of our assumption that

U(Xi)∼′
iV(Xi), it must be the case that V(Xi) = U(Xi), i.e., V ∈ Ψ≻′

i
(C). Thus, we

have:

U ∈ Ψ≻′

i
(C) \Ψ≻d

(C)⇒ ∃V ∈ Ψ≻′

i
(C) ∩Ψ≻d

(C) : V ≻d U (4.5)

This completes the proof.
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Algorithm 2 constructs a subset of Ψ≻d
(C), using the sets {Ψ≻′

i
(C) | Xi ∈ I}. First,

the algorithm computes the set I of most important attributes in X with respect to

� (Line 1). The algorithm iteratively computes Ψ≻′

i
(C) for each Xi ∈ I (Lines 2, 3),

identifies the subset of solutions that are non-dominated with respect to ≻d in each

case, and combines them to obtain θ ⊆ Ψ≻d
(C).

Algorithm 2 WeaklyCompleteCompose({≻i},�, f, ϕ)

1. I ← Ψ�(X ) = {Xi | ∄Xj : Xj �Xi}
2. for all Xi ∈ I do
3. Ψ≻′

i
(C)← ComposeAndFilter(≻′

i, f, ϕ)
4. θ ← θ ∪Ψ≻d

(Ψ≻′

i
(C))

5. end for
6. return θ

Theorem 6 (Soundness and Weak Completeness of Algorithm 2). Given a set of at-

tributes X , preference relations � and ≻′
i, Algorithm 2 generates a set θ of feasible

compositions such that θ ⊆ Ψ≻d
(C) and Ψ≻d

(C) 6= ∅ ⇒ θ 6= ∅.

Proof.

Soundness: The proof proceeds by contradiction. Suppose that the algorithm returns

a solution U ∈ θ such that U /∈ Ψ≻d
(C). Because U ∈ θ, it is necessary (by Line 4)

that ∃Xi ∈ I : U ∈ Ψ≻′

i
(C) \ Ψ≻d

(C). Then, from Equation (4.5) in the proof of

Proposition 13, ∃V ∈ Ψ≻′

i
(C) ∩Ψ≻d

(C) : V ≻d U , which means that U /∈ Ψ≻d
(Ψ≻′

i
(C)).

However, this contradicts Line 4 of the algorithm. Hence, θ ⊆ Ψ≻d
(C), i.e., Algorithm 2

is sound.

Weak Completeness: Because I 6= ∅, Line 4 is executed by the algorithm at least once

for some Xi ∈ I. By Definition 22, we have C 6= ∅ ⇒ Ψ≻′

i
(C) 6= ∅ ⇒ Ψ≻d

(Ψ≻′

i
(C)) 6=

∅ ⇒ θ 6= ∅. Hence, Algorithm 2 is weakly complete by Definition 24.

In general, Algorithm 2 is not guaranteed to yield a complete set of solutions, i.e.,

θ 6= Ψ≻d
(C). The following example illustrates such a case.
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Example 7. Consider a compositional system with two attributes X = {X1, X2}, with

domains {a1, a2, a3} and {b1, b2, b3} respectively. Let their intra-attribute preferences be

total orders: a1 ≻1 a2 ≻1 a3 and b1 ≻2 b2 ≻2 b3 respectively, and let both attributes

by equally important (� = ∅). Suppose the user-specified goal ϕ is satisfied by three

feasible compositions C1, C2, C3 with valuations VC1
= 〈{a1}, {b3}〉, VC2

= 〈{a3}, {b1}〉

and VC3
= 〈{a2}, {b2}〉 respectively. Given the above preferences, Ψ≻′

1
(C) = {C1} and

Ψ≻′

2
(C) = {C2}. Thus, θ = {C1, C2} However, Ψ≻d

(C) = {C1, C2, C3} 6= θ. ⋄

The above example shows that the most preferred valuation for one attribute (e.g.,

X1) can result in poor valuations for one or more other attributes (e.g., X2). Algorithm 2

may thus leave out solutions like C3 that are not most preferred with respect to any one

≻′
i, but nevertheless may correspond to a good compromise when we consider multiple

most important attributes. It is a natural question ask what are the minimal conditions

under which Algorithm 2 is complete. A related question is whether Algorithm 2 can

be guaranteed to produce a certain minimum number of non-dominated solutions (|θ|)

under some specific set of conditions. Note that in general, the cardinality of θ depends

not only on the user preferences ≻i,�, but also on the user specified functionality ϕ

which together with the repository R determines the set C of feasible compositions.

However, in the special case when � specifies a single attribute Xt that is relatively

more important than all other attributes, we can show that Algorithm 2 is complete.

Proposition 14. If I = {Xt} ∧ ∀Xk 6= Xt ∈ X : Xt � Xk, then Ψ≻d
(C) ⊆ θ, i.e.,

Algorithm 2 is complete.

Proof. The proof proceeds by contradiction. Let I = {Xt} and ∀Xk 6= Xt ∈ X : Xt�Xk,

and suppose that ∃V ∈ Ψ≻d
(C) \ Ψ≻′

t
(C). Since V /∈ Ψ≻′

t
(C), by Definition 22 it must

be the case that ∃U ∈ Ψ≻′

t
(C) : U(Xt)≻′

tV(Xt). However, then U ≻d V by Definition 20

thus contradicting our assumption that V ∈ Ψ≻d
(C).
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It remains to be seen what are all the necessary and sufficient conditions for ensuring

the completeness of Algorithm 2, and we plan to address this problem in future.

4.2.4 Optimizing with Respect to One of the Most Important Attributes

As we will see in Section 4.2.6, Algorithm 2 has a high worst case complexity, espe-

cially if the set I of most important attributes is large. This is due to the fact that for

each most important attribute Xi ∈ I, the algorithm computes the non-dominated set

over the feasible compositions with respect to ≻′
i first, and then with respect to ≻d ,

i.e., θ∪Ψ≻d
(Ψ≻′

i
(C)) (Line 4). The computation of the non-dominated set with respect

to ≻d , although expensive, is crucial to ensuring the soundness of Algorithm 2.

While soundness is a desirable property, there may be settings requiring faster com-

putation of feasible compositions, where it may be acceptable to obtain a set S of feasible

compositions that contains at least one (whenever there exists one) of the most preferred

feasible compositions (one that is non-dominated by any other feasible composition with

respect to ≻d ). In such a case, it might be useful to have an algorithm with lower com-

plexity that finds a set of feasible compositions of which at least one is most preferred

(i.e., weakly complete), as opposed to one with a higher complexity that finds a set of

feasible compositions all of which are most preferred (i.e., sound).

Algorithm 3 AttWeaklyCompleteCompose({≻i},�, f, ϕ)

1. I ← Ψ�(X ) = {Xi | ∄Xj : Xj �Xi}
2. for some Xi ∈ I
3. θ ← Ψ≻′

i
(C) = ComposeAndFilter(≻′

i, f, ϕ)
4. return θ

We consider one such modification of Algorithm 2, namely Algorithm 3, that arbi-

trarily picks one of the most important attributes Xi ∈ I (as opposed to the entire set I

as in Algorithm 2) and finds the set of all feasible compositions that are non-dominated

with respect to ≻′
i, i.e., θ = Ψ≻′

i
(C) for Algorithm 3.
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The weak completeness of Algorithm 3 follows directly from Proposition 13. In the

following example, however, we show that some of the feasible compositions produced

by Algorithm 3 may be dominated by some other feasible composition with respect to

≻d , i.e., Algorithm 3 is not sound.

Example 8. Consider a compositional system with two attributes X = {X1, X2}, with

domains {a1, a2} and {b1, b2} respectively. Let their intra-attribute preferences be: a1 ≻1

a2 and b1 ≻2 b2 respectively, and let both attributes by equally important (� = ∅; I =

{X1, X2}). Suppose the user-specified goal ϕ is satisfied by three feasible compositions

C1, C2, C3 with valuations VC1
= 〈{a1}, {b1}〉, VC2

= 〈{a2}, {b1}〉 and VC3
= 〈{a1}, {b2}〉

respectively. Given the above preferences, if we choose to maximize the preference with

respect to attribute X1 ∈ I, then θ = Ψ≻′

1
(C) = {C1, C3}. If we chose X2 ∈ I instead,

we get θ = Ψ≻′

2
(C) = {C1, C2}. However, in any case Ψ≻d

(C) = {C1} 6= θ. ⋄

We note that Algorithm 3 and Algorithm 2 are identical when |I| = 1, i.e., when

there is a unique most important attribute in X with respect to �. Hence, Algorithm 3

is sound (Theorem 6) and complete (Proposition 14) in this case.

4.2.5 Interleaving Functional Composition with Preferential Optimization

Algorithms 1, 2 and 3 identify the most preferred feasible compositions using the

two step approach: (a) find the feasible compositions C; and (b) compute a subset of

C that is preferred with respect to the user preferences. We now develop an algorithm

that eliminates some of the intermediate partial feasible compositions from consideration

based on the user preferences. This is particularly useful in settings (such as when |C|

is large relative to |Ψ≻d
(C)|), where it might be more efficient to compute only a subset

of C that are likely (based on ≻i and �) to be in Ψ≻d
(C).

Algorithm 4 requires that the functional composition algorithm f is incremental (see

Definition 6), i.e., that it produces a set f(C) of functionally feasible extensions given
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Algorithm 4 InterleaveCompose(L,≻, f, ϕ)

1. if L = ∅ then
2. return ∅
3. end if
4. θ = Ψ≻(L)
5. θ′ = ∅
6. for all C ∈ θ do
7. if C 6|= ϕ then
8. θ′ = θ′ ∪ f(C)
9. else

10. θ′ = θ′ ∪ {C}
11. end if
12. end for
13. if θ′ = θ then
14. return θ
15. else
16. InterleaveCompose((L \ θ) ∪ θ′,≻, f, ϕ)
17. end if

any existing partial feasible composition C. At each step, Algorithm 4 chooses a subset

of the feasible extensions produced by applying f on all the non-dominated partial

feasible compositions, based on the user preferences. Algorithm 4 computes the non-

dominated set of feasible compositions by interleaving the execution of the incremental

functional composition algorithm f with the ordering of partial solutions with respect

to preferences over non-functional attributes.

Algorithm 4 is initially invoked using the parameters L = {⊥} 4, ≻d , the functional

composition algorithm f and ϕ. The algorithm maintains at each step a list L of partial

feasible compositions under consideration. If L is empty at any step, i.e., there are

no more partial feasible compositions to be explored, then the algorithm terminates

with no solution (Lines 1 − 3); otherwise it selects from L, the subset θ that is non-

dominated with respect to some preference relation ≻ (Line 4). If all the partial feasible

4It is not necessary to invoke the algorithm with L = (⊥) initially. There may be functional
composition algorithms that begin with an non-empty composition C and proceed to obtain a feasible
composition by iteratively altering C. For instance, one could think of randomized or evolutionary
algorithms that begin with a random, non-empty composition which is somehow repeatedly “improved”
during the course of composition.
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compositions in θ are also feasible compositions, then the algorithm outputs θ and

terminates (Lines 13− 14). Otherwise, it replaces the partial feasible compositions in θ

that are not feasible compositions, with their one-step extensions (Lines 7− 8).

Proposition 15 (Termination of Algorithm 4). Given a finite repository of components,

Algorithm 4 terminates in a finite number of steps.

Proof. Given a finite repository R of components, and an algorithm f that computes

feasible extensions of partial feasible compositions5, and due to the fact that Algorithm 4

does not re-visit any partial feasible composition, the number of recursive calls is finite.

We next investigate the soundness, weak-completeness and completeness properties of

Algorithm 4. Proposition 16 states that the algorithm is in general not sound with

respect to C, i.e., it is not guaranteed to produce feasible compositions that are non-

dominated with respect to ≻d . However, this does not discount the usefulness of the

algorithm, as we will show that it is sound under some other assumptions (see Theo-

rem 7).

Proposition 16 (Unsoundness of Algorithm 4). Given a functional composition algo-

rithm f and user preferences ≻′
i and � over a set of attributes X , Algorithm 4 is not

guaranteed to generate a set of feasible compositions θ such that θ ⊆ Ψ≻d
(C).

Proof. We provide an example wherein Algorithm 4 returns a feasible composition that

is dominated by some other feasible composition. Consider a compositional system

with a single attribute X = {X1}, with a domain of {a1, a2, a3, a4}. Let the intra-

attribute preference of the user over those values be the partial order: a4 ≻1 a1 and

a2 ≻1 a3 (Figure 4.3). Let R = {W1,W2,W3,W4} be the repository of components in

the compositional system such that VWi
(X1) = {ai}.

5An f that terminates with a set of feasible extensions is guaranteed by the decidability of ϕ.
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a1

a2

a3

a4

Figure 4.3 Intra-attribute preference ≻1 for attribute X1

Suppose that there are three feasible compositions in C satisfying the user specified

functionality ϕ, namely C1 = W1, C2 = W2, C3 = W3 ⊕W4. Their respective valuations

are: VC1
= 〈{a1}〉, VC2

= 〈{a2}〉 and VC3
= 〈{a3, a4}〉. Clearly, Ψ≻d

(C) = {C2, C3},

because VC3
≻d VC1

(due to the fact that {a3, a4}≻′
1{a1}).

W1

⊥

W2 W3

W3 ⊕W4

Iteration 0

Iteration 1

Iteration 2

Algorithm terminates with

dominates W1 !

W1 and W2 as solutions
as W2 dominates W3 and
W1 in incomparable to W3

Figure 4.4 Execution of Algorithm 4

Now suppose that there exists a functional composition algorithm f that produces

the following sequence of partial feasible compositions (Figure 4.4): {⊥}, {W1,W2,W3},

{W1,W2,W3 ⊕W4}. According to Line 13 of Algorithm 4, the algorithm will terminate

after the first invocation of f , i.e., when the set {W1,W2,W3} of partial feasible com-

positions is produced by f . This is because after the first iteration, θ = {W1,W2},

with VW2
≻d VW3

, and both W1 and W2 are feasible compositions. This results in

θ = {C1, C2} 6⊆ Ψ≻d
(C).

This result implies that in general, not all feasible compositions returned by Algo-

rithm 4 (θ) are in Ψ≻d
(C). The example shown in Figure 4.5 illustrates this problem. At

the time of termination, there may exist some partial feasible composition B in the list
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L that is dominated by some feasible composition E in θ; however, it may be possible

to extend B to a feasible composition B ⊕W that dominates one of the compositions

F in θ (as illustrated by the counter example in the proof). In other words, VE ≻d VB,

VF ∼d VE, VF ∼d VB and VB⊕W ≻d VF .

�
E F B

B �W

............

Figure 4.5 The case when Algorithm 4 is not sound

Although Algorithm 4 is not sound in general, we show that it is sound when the

≻d relation is an interval order (as opposed to an arbitrary partial order).

Theorem 7 (Soundness of Algorithm 4). If ≻d is an interval order, then given a

functional composition algorithm f and user preferences {≻′
i},� over a set of attributes

X , Algorithm 4 generates a set θ of feasible compositions such that θ ⊆ Ψ≻d
(C).

Proof. Suppose that by contradiction, F ∈ θ and there is a feasible composition D /∈ θ

such that VD≻d VF . If D is present in the list L upon termination of the algorithm, then

D should have been in θ, because the algorithm terminates only when all compositions

in Ψ≻d
(L) are feasible. This implies that the algorithm did not terminate with an L

containing D.

The algorithm keeps track of all partial feasible compositions that can be extended

from⊥ in L, without discarding any of them before termination. Therefore, the existence

of any such feasible composition D that is not in L at the time of termination must

imply the existence of some partial feasible composition B in the list (at the time of

termination) that can be extended to produce the feasible composition D, i.e., B⊕W1⊕

W2 ⊕ . . .⊕Wn = D such that B 6|= ϕ and D |= ϕ.
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B 6|= ϕ ⇒ B /∈ θ at the time of termination, and therefore ∃E ∈ θ : VE ≻d VB.

Because ≻d is transitive (by Proposition 5), since VD 6 ≻d VB (by Proposition 10), it

follows that VD 6 ≻d VE (otherwise, VD≻d VE ∧ VE ≻d VB ⇒ VD≻d VB, a contradiction).

Hence, D must dominate some composition other than E, say F ∈ θ at the time of

termination, i.e., VD≻d VF . Because E,F ∈ θ, it follows that VF ∼d VE , which in turn

implies that VE 6 ≻d VD. Therefore, ∃F ∈ θ : VD≻d VF , VF ∼d VE and VE ∼d VD (see

Figure 4.6).

VF

VE

VB

VD

Figure 4.6 Dominance relationships that violate the interval order restric-
tion on ≻d

From VE ≻d VB, VD≻d VF , VF ∼d VE and VD 6 ≻d VB, it follows that VD ∼d VB

(because VB ≻d VD would otherwise imply VE ≻d VF , a contradiction). Finally, it must be

the case that: VB 6 ≻d VF , since otherwise it would contradict VF ∼d VE; and VF 6 ≻d VB,

since otherwise it would contradict VD ∼d VB. Therefore, VB ∼d VF . Thus, the only

possible dominance relationships among the compositions B,D,E, F are as follows (see

Figure 4.6):

• VE ≻d VB

• VD≻d VF

However, this scenario is ruled out by the fact that ≻d is an interval order. Hence

∀F ∈ θ, ∀D ∈ C \ θ : VD 6 ≻d VF , i.e., θ ⊆ Ψ≻d
(C).

Because Theorem 7 requires ≻d to be an interval order, an important question arises:

What are the conditions under which ≻d an interval order? We investigate the answer
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to this question later in Section 5.3, where we prove that if {≻i} and � are total orders,

then ≻d is a weak order (i.e., also an interval order). Based on the experimental results

we obtain, we further conjecture that if {≻i} are totally ordered and � is partially

ordered, then ≻d is a weak order.

Theorem 8 (Weak Completeness of Algorithm 4). If ≻d is an interval order, then

given a functional composition algorithm f and user preferences {≻′
i},� over a set of

attributes X , Algorithm 4 produces a set θ of feasible compositions such that Ψ≻d
(C) 6=

∅ ⇒ θ ∩Ψ≻d
(C) 6= ∅.

Proof. From Theorem 7, we have θ ⊆ Ψ≻d
(C) when ≻d is an interval order. It suffices

to show that Ψ≻d
(C) 6= ∅ ⇒ θ 6= ∅. The algorithm terminates with the non-dominated

set of compositions in the current list L, i.e., the maximal elements of L with respect

to ≻d . The set of maximal elements of any partial order on the set of elements in L is

not empty whenever L is not empty, and the set of elements in L is in turn not empty

whenever C is not empty. Therefore, Ψ≻d
(C) 6= ∅ ⇒ C 6= ∅ ⇒ L 6= ∅ ⇒ θ 6= ∅ as

required.

Theorem 9 (Completeness of Algorithm 4). If ≻d is a weak order, then given a func-

tional composition algorithm f and user preferences {≻′
i},� over a set of attributes X ,

Algorithm 4 generates a set θ of feasible compositions such that Ψ≻d
(C) ⊆ θ.

Proof. It suffices to show that there is no feasible composition D ∈ Ψ≻d
(C) \ θ.

Suppose by contradiction that D ∈ Ψ≻d
(C), and D /∈ θ. This means that D was not

present in the list L upon the termination of the algorithm (because otherwise D ∈ θ

as per Lines 4, 6, 13 in Algorithm 4). Hence, D must be a feasible extension of some

partial feasible composition B that is present in L at the time of termination such that

B ⊕W1 ⊕W2 ⊕ . . .⊕Wk = D.
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From Proposition 10, we have VD 6 ≻d VB. Because ≻d is a weak order, (a) ∀E ∈

θ : VE ≻d VB; and (b) VD 6 ≻d VB ∧ VE ≻d VB ⇒ VE ≻d VD. However, this contradicts our

assumption that D ∈ Ψ≻d
(C).

A summary of the conditions (properties of the dominance relation ≻d ) under which

the algorithms are sound, complete and weak complete of are given in Table 4.2.

Algorithm Sound Weakly Complete Complete

A1 po po po
A2 po po |I| = 1
A3 |I| = 1 po |I| = 1
A4 io io wo

Table 4.2 Properties of ≻d for which the algorithms are sound, weakly
complete and complete. po stands for partial order; io stands for
interval order; wo stands for weak order; and |I| = 1 is when
there is a unique most important attribute.

4.2.6 Complexity

In this section, we study the complexity of dominance testing (evaluating ≻d , see

Chapter 4, Section 4.1.3) as well as the complexity of the algorithms for computing the

non-dominated set of feasible compositions. We express the worst case time complex-

ity of dominance testing in terms of the size of user specified intra-attribute, relative

importance preference relations and the attribute domains (see Table 4.3).

Computing the maximal(non-dominated)/minimal subset. Let≻ be a par-

tial order on the set S, with a width of w (size of the maximal set of elements which are

pairwise incomparable) and n = |S|. The algorithm due to Daskalakis et al. discussed in

Section 4.2.1 finds the maximal or minimal subset of S with respect to ≻ within O(wn)

pairwise comparisons. Note that the maximum width of any partial order is w = n,

when ≻= ∅. Hence, in the worst case O(n2) comparisons are needed.
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Relation / Set Symbol Cardinality Remarks

Attributes X m Number of attributes
Domain of Attributes Di n Number of possible valuations

of Xi

Intra-attribute preferences ≻i wint Width of the partial order ≻i

Intra-attribute preferences ≻i kint Size of the relation ≻i

Relative Importance � wrel Width of the partial order �

Relative Importance � krel Size of the relation �

Most Important Attributes I mI Number of most important at-
tributes

Repository R r Number of components in R
Feasible Compositions C c Number of feasible composi-

tions
Dominance Relation ≻d wdom Width of the dominance rela-

tion

Table 4.3 Cardinalities of sets and relations

4.2.6.1 Complexity of Dominance Testing

Computing Worst Frontiers (Φi). Let S ⊆ Di. Recall from Definition 15 that

the worst frontier of a set S with respect to an attribute Xi is Φi(S) := {v : v ∈ S, ∄u ∈

S s.t. v ≻i u}, i.e., the minimal set of elements in S with respect to the preference

relation ≻i. Using the algorithm due to Daskalakis et al. to find the minimal set with

respect to a partial order (see above), the complexity of computing Φi(S) is O(nwint).

Comparing Worst Frontiers (≻′
i). Let A,B ∈ F (Xi). As per Definition 17,

A≻′
iB ⇔ ∀b ∈ B, ∃a ∈ A : a ≻i b. In the worst case, computing A≻′

iB would

involve checking whether a ≻i b for each pair a, b, which would cost O(kint). Hence, the

complexity of comparing the worst frontiers A and B is O(n2kint).

Dominance Testing (≻d ). Recall from Definition 20 the definition of dominance:

U ≻d V ⇔ ∃Xi : U(Xi)≻′
iV(Xi) ∧

∀Xk, (Xk �Xi ∨Xk ∼� Xi) ⇒ U(Xk)�
′
kV(Xk)
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The complexity of dominance testing is the complexity of finding a witness attribute

in X for U ≻d V. For each attribute Xi, the complexity of computing the first clause

in the conjunction of the definition of U ≻d V is O(n2kint); and that of computing the

second clause is O
(
m(n2kint +krel)

)
, where O(krel) and O(n2kint) are the complexities of

evaluating the left and right hand sides of the implication (respectively) for each Xk ∈ X .

Hence, the complexity of dominance testing is O
(
m

(
n2kint+m(n2kint+krel)

))
, or simply

O
(
m2(n2kint + krel)

)
. We will use the shorthand d to denote m2(n2kint + krel).

4.2.6.2 Complexity of Algorithms

Each of the algorithms for computing the non-dominated feasible compositions make

use of a functional composition algorithm f to find feasible compositions. Hence, the

complexity analysis of the algorithms needs to incorporate of the complexity of the

functional composition algorithm as well.

Recall that Algorithms 1, 2 and 3 begin by computing the set of all feasible com-

positions in a single shot using a functional composition algorithm as a black box, and

then proceed to find the most preferred among them. Algorithm 4 instead makes use

of a functional composition algorithm that produces the set of feasible compositions by

iteratively extending partial feasible compositions. Specifically, it interleaves the execu-

tion of the functional composition algorithm with the ordering of partial solutions with

respect to preferences over non-functional attributes.

We denote by O(fe) and O(fg) respectively, the complexity of computing the set of

feasible extensions of a partial feasible composition with respect to ϕ and the complexity

of computing the set of all feasible compositions with respect to ϕ.

4.2.6.3 Complexity of Algorithm 1

The overall complexity for finding the set of all non-dominated feasible compositions

is O(fg + cwdomd), where O(d) is the complexity of evaluating ≻d for any pair of com-
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positions. The first term fg accounts for Line 1 of the algorithm which computes the

set of all feasible compositions, and the term cwdomd corresponds to the computation of

Ψ≻d
(C) as per the algorithm given in Section 4.2.1.

4.2.6.4 Complexity of Algorithm 2

The complexity of identifying the most important attributes I with respect to �

(Line 1) is O(mwrelkrel). For each most important attribute Xi ∈ I, Algorithm 2

(a) invokes Algorithm 1 using the derived intra-attribute preference ≻′
i to compute

Ψ≻′

i
(C); (b) identifies the subset of Ψ≻′

i
(C) that is non-dominated with respect to ≻d ;

and (c) adds them to the set of solutions. Hence, the complexity of Algorithm 2 is

O
(
mwrelkrel +mI(fg + cwdomn

2kint) +mI |Ψ≻′

i
(C)|2d

)
.

Since the feasible compositions with respect to any given ϕ are fixed, by computing

the feasible compositions only once (during the first invocation of Algorithm 1 and

storing them), the complexity of Algorithm 2 can be further reduced toO(fg+mwrelkrel+

mIcwdomn
2kint +mI |Ψ≻′

i
(C)|2d).

4.2.6.5 Complexity of Algorithm 3

The complexity of identifying the most important attributes I with respect to �

(Line 1) is O(mwrelkrel). In contrast to Algorithm 2, Algorithm 3 invokes Algorithm 1

using the derived intra-attribute preference ≻′
i to compute Ψ≻′

i
(C) for exactly one of

the most important attributes, Xi ∈ I. Hence, the complexity of Algorithm 3 is O
(
fg +

mwrelkrel + cwdomn
2kint).

4.2.6.6 Complexity of Algorithm 4

We consider the worst case wherein the space of partial feasible compositions ex-

plored by Algorithm 4 is a tree rooted at ⊥; let b be its maximum branching factor
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(corresponding to the maximum number of extensions produced by the functional com-

position algorithm), and h its height (corresponding to the maximum number of com-

ponents used in a composition that satisfies ϕ). In the worst case, in each iteration of

Algorithm 4, every element of L, the list of current partial feasible compositions, ends

up in the non-dominated set θ.

Each level in the tree corresponds to one iteration of Algorithm 4, and at the lth iter-

ation, in the worst case there are bl nodes in L. Hence, the complexity of the lth iteration

is O
(
(bl)2d+blfe

)
, where the first term corresponds to computing the non-dominated set

among the current set of partial feasible compositions, and the second term corresponds

to computing the feasible extensions of each partial feasible composition. Hence, the

overall complexity of Algorithm 4 is O
(∑h

l=0 (b2ld+ blfe)
)
≈ O(b2hd+ bhfe).

We further conducted experiments on the algorithms using simulated problem in-

stances to study how the algorithms perform in practice, which we describe next.

4.3 Related Work

Techniques for representing and reasoning with user preferences over a set of alter-

natives have been studied extensively in the areas of decision theory, microeconomics,

psychology, operations research, etc. The seminal work by vonNeumann and Morgen-

stern [Morgenstern and Von Neumann, 1944] models user preferences using utility func-

tions that map the set of possible alternatives to numeric values. More recently, models

for representing and reasoning with quantitative preferences over multiple attributes

have been developed [Fishburn, 1970, Keeney and Raiffa, 1993, Bacchus and Grove,

1995, Boutilier et al., 2001]. Such models have been used to address problems such

as identifying the most preferred tuples resulting from database queries [Agrawal and

Wimmers, 2000, Hristidis and Papakonstantinou, 2004, Börzsönyi et al., 2001], assem-

bling preferred composite Web services [Zeng et al., 2003, Zeng et al., 2004, Yu and Lin,
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2005, Berbner et al., 2006], and in other composition problems.

However, in many applications it is more natural for users to express preferences

in qualitative terms [Doyle and McGeachie, 2003, Doyle and Thomason, 1999, Dubois

et al., 2002] and hence, there is a growing interest in AI on formalisms for representing

and reasoning with qualitative preferences [Brafman and Domshlak, 2009]. We now

proceed to place our work in the context of some of the recent work on representing and

reasoning with qualitative preferences.

4.3.1 TCP-nets

Notable among qualitative frameworks for preferences are preference networks [Boutilier

et al., 2004, Brafman et al., 2006] that deal with qualitative and conditional preferences.

A class of preference networks, namely Tradeoff-enhanced Conditional Preference net-

works (TCP-nets) [Brafman et al., 2006] are closely related to our work, and we now

proceed to discuss where our framework departs from and adds to the existing TCP-net

framework.

TCP-nets provide a very elegant and compact graphical model to represent qualitative

intra-attribute and relative importance preferences over a set of attributes. In addition,

TCP-nets can also model conditional preferences using dependencies among attributes.

While TCP-nets allow us to represent and reason about preferences in general over

simple objects (each of which is described by a set of attributes), the focus of our work

is to reason about such preferences over compositions of simple objects (i.e., a collection

of objects satisfying certain functional properties). For example, in the domain of Web

services, the problem of identifying the most preferred Web services from a repository of

available ones based on their non-functional attributes, namely Web service selection can

be solved using the TCP-net formalism. On the other hand, in addition to Web service

selection, our formalism can also address the more complicated problem of identifying

the most preferred composite Web services that collectively satisfy a certain functional
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requirement, namely Web service composition.

Our formalism is based on the intra-attribute and relative importance preferences

over a set of attributes describing the objects. As a result, the graphical representation

scheme of TCP-nets can still be used to compactly encode the intra-attribute and relative

importance preferences of the users within our formalism 6.

We have extended reasoning about preferences over single objects to enable reasoning

about preferences over collections of objects. We have: (a) provided an aggregation

function for computing the valuation of a composition as a function of the valuations

of its components; (b) defined a dominance relation for comparing the valuations of

compositions and established some of its properties; and (c) developed algorithms for

identifying a subset or the set of most preferred composition(s) with respect to this

dominance relation.

Our formalism departs from TCP-nets in the interpretation of the intra-attribute

and relative importance preferences over objects: the dominance relation in a TCP-net

is defined as any partial order relation that is consistent with the given preferences

over attributes of the objects, based on the ceteris-paribus semantics. We introduce a

dominance relation (see Definition 20) that allows us to reason about preferences over

collections of objects in terms of sets of valuations of the attributes of objects that make

up the collection. For instance, our worst frontier aggregation function returns the set

of worst possible attribute valuations among all the components.

When our dominance relation is applied in the simpler setting where each collec-

tion consists of a single object, the aggregation function for each attribute reduces to the

identity function, and the preference relation ≻′
i over sets of valuations of each attribute

Xi reduces to the intra-attribute preference ≻i. We have recently shown [Santhanam

et al., 2010b, Santhanam et al., 2009a] that in general, when TCP-nets are restricted

6In our setting, we do not consider conditional preferences that correspond to edges denoting condi-
tional dependencies in the TCP-nets.
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to unconditional preferences, our dominance relation (when each collection consists of

a single object) and the dominance relation used in TCP-nets are incomparable; When

relative importance is restricted to be an interval order, our dominance relation is more

general than the dominance relation used in TCP-nets with only unconditional pref-

erences. In the latter case, our dominance relation is computable in polynomial time,

whereas there are no known polynomial time algorithms for computing TCP-net domi-

nance [Santhanam et al., 2010b, Santhanam et al., 2009a].

4.3.2 Preferences over Collections of Objects

Several authors have considered ways to extend user preferences to obtain a ranking

of collections of objects (see [Barbera et al., 2004] for a survey). In all these works,

preferences are specified over individual objects in a set as opposed to preferences over

valuations of the attributes of the objects. The preferences over objects are in turn used

to reason about preferences over collections of those objects. This scenario can be sim-

ulated by our framework, by introducing a single attribute whose valuations correspond

to objects in the domain.

desJardins et al. [desJardins and Wagstaff, 2005] have considered the problem of

finding subsets that are optimal with respect to user specified quantitative preferences

over a set of attributes in terms of the desired depth, feature weight and diversity for

each attribute. In contrast, our framework focuses on qualitative preferences. In our

setting, depth preferences that map attribute valuations to their relative desirability

can be mapped to qualitative intra-attribute preferences and feature weights can be

mapped to relative importance. Diversity preferences over attributes refer to the spread

(e.g., variance, range, etc.) of component valuations with respect to the corresponding

attributes. It would be interesting to explore whether a suitable dominance relation can

be defined so as to simultaneously capture in our framework the user preferences with

respect to the depth, diversity and feature weights.
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More recently, Binshtok et al. [Binshtok et al., 2009] have presented a language for

specification of preferences over sets of objects. This framework, in addition to intra-

attribute and relative importance preferences over attributes, allows users to express

preferences over the number (|ϕ|) of elements in a set that satisfy a desired property ϕ.

The preference language in this case allows statements such as “Si : |ϕ| REL n” (number

of elements in the preferred set with property ϕ should be REL n), “Sj : |ϕ| REL |ψ|”

(number of elements in the preferred set with property ϕ should be REL number of

elements in the preferred set with property ψ), etc., where REL is one of the arithmetic

operators >,<,=,≥,≤ and n is an integer. In addition, there can be relative importance

between the various preference statements such as “Si is more important than Sj” as

well as external cardinality constraints such as a bound on the number of elements in

the preferred set.

Our formalism can accommodate such preference statements, by representing each

preference statement Si as a new binary valued attribute in the compositional system.

For example, preference statements Si : |ϕ| ≥ n and Sj : |ϕ| ≤ |ψ| can be represented

in our formalism by creating new binary attributes Xi and Xj with intra-attribute

preferences 1 ≻i 0 and 1 ≻j 0 respectively. The relative importance statements such

as “Si is more important than Sj” can then be directly mapped to Xi�Xj . Any external

cardinality constraints on the size of the preferred set can be encoded in our setting by

functional requirements, so as to restrict the feasible solutions to only those that satisfy

the cardinality constraints.

Consider the example discussed in [Binshtok et al., 2009], with preferences over sen-

ate members described by attributes: Party affiliation (Republican, Democrat ), Views

(liberal, conservative, ultra conservative), and Experience (experienced, inexperienced).

The attributes and their domains are listed in Table 4.4. The set preferences are given

by:
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Property Denoted by New Attribute Attribute Domain

Party Affiliation P XP {Re,De}
Views V XV {Li, Co, Ul}
Experience E XE {Ex, In}

Table 4.4 Properties/Attributes describing the senators

• S1 : 〈|P = Re ∨ V = Co| ≥ 2〉

• S2 : 〈|E = Ex| ≥ 2〉

• S3 : 〈|V = Li| ≥ 1〉

Note that the senate members (i.e., the individual objects) are described by three at-

tributes XP , XV , XE representing the party affiliation, views and experience respectively.

The valuation function for these attributes is defined in the obvious manner, e.g., if a

senator Wj is a republican, then VWj
(XP ) = Re. We introduce three additional boolean

attributes X1, X2, X3 corresponding to the preference statements S1, S2, S3 respectively.

The valuation function for each new attribute of a senator Wi can then be defined as

follows.

• VWi
(X1) =






1 , if Wi |= S1 i.e., VWi
(XP ) = Re or VWi

(XV ) = Co

0 , otherwise

• VWi
(X2) =






1 , if Wi |= S2 i.e., VWi
(XE) = Ex

0 , otherwise

• VWi
(X3) =






1 , if Wi |= S3 i.e., VWi
(XV ) = Li

0 , otherwise

The valuation of the collection of senators W1 ⊕W2 ⊕ . . .⊕Wn for i ∈ {1, 2, 3} is:
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VW1⊕W2⊕...⊕Wn
(Xi) = Φi(VW1

, VW2
, . . . VWn

) = VW1
(Xi) + VW2

(Xi) + · · ·+ VWn
(Xi)

Note that the aggregation function Φi defined above differs from the worst-frontier

based aggregation function adopted in Definition 15. The preference relation for com-

paring groups of senators with respect to each new attribute Xi can then be defined

based on the preference statement Si. For example, in the case of X1 we define ≻′
1

such that any value ≥ 2 is preferred to any value < 2, etc. Having defined the above

aggregation function and comparison relation for each new attribute, any dominance

relation can be adopted to compare compositions (arbitrary subsets) with respect to all

attributes (including the dominance relation used by Binshtok et al. 2009).

In contrast to the framework of Binshtok et al., our formalism focuses on collections

of objects that satisfy some desired criteria, rather than arbitrary subsets. We provide

algorithms for finding the most preferred compositions that satisfy the desired criteria.

4.3.3 Database Preference Queries

Several authors [Brafman, 2004, Börzsönyi et al., 2001, Chomicki, 2002, Chomicki,

2003, Kiessling and Kostler, 2002, Kiessling, 2002] have explored techniques for incor-

porating user specified preferences over the result sets of relational database queries.

For instance, Chomicki’s framework [Chomicki, 2002, Chomicki, 2003] allows user pref-

erences over each of the attributes of a relation to be expressed as first order logic

formulas. Suppose Sq is the set of tuples that match a query q. For each attribute Xi,

from Sq, a subset Sqi
of tuples that have the most preferred value(s) for Xi is identified.

The result set for the query q is then given by ∩iSqi
. A similar framework for expressing

and combining user preferences is presented in [Kiessling and Kostler, 2002, Kiessling,

2002]. Brafman and Domshlak have pointed out [Brafman, 2004] some of the semantic

difficulties associated with above approaches, and considered an alternative approach to

identifying the preferred result set based on the CP-net [Boutilier et al., 2004] dominance
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relation. Because of the high computational complexity of dominance testing for CP-

nets [Boutilier et al., 2004], they proposed an efficient alternative based on an ordering

operator that orders the tuples in the result set in a way that is consistent with the user

preferences. Our formalism can be used in the database setting, similar in spirit to that

of Brafman and Domshlak, by considering each tuple in Sq as a collection with a single

object. The differences in the semantics of the CP-net dominance and our dominance

relation is discussed in Section 4.3.1.

A host of algorithms have also been proposed for computing the non-dominated result

set in response to preference queries, especially for the efficient evaluation of skyline

queries. A skyline query yields the non-dominated result set from a database, where

dominance is evaluated based on the notion of pareto dominance. Pareto dominance

requires that the dominating element is preferred or equal to the dominated element with

respect to all attributes (with respect to their respective intra-attriubute preference),

and is strictly preferred to the dominated element with respect to at least one attribute.

Another aspect of pareto dominance is that it does not consider the relative importance

preferences of the user over the attributes, i.e., it considers all attributes to be equally

important.

Most of the proposed algorithms for computing the skylines (e.g., Blocked-nested-

loop (BNL) [Börzsönyi et al., 2001], Sort-filter-skyline (SFS) [Chomicki, 2003]; see [Jain,

2009, Preisinger, 2009] for a survey) are applicable only when intra-attribute preferences

are totally or weakly ordered. Some other algorithms have been recently developed to

handle partially ordered attribute domains (such as BNL+, BBS+, SDC, SDC+ [Chan

et al., 2005], TSS [Sacharidis et al., 2009] and FAST-SKY [Jung et al., 2010]). These

algorithms rely on creating and maintaining indexes over the attributes in the database,

and on data structures specifically designed to identify the skyline with respect to pareto

dominance. These algorithms may be considered if a particular problem instance involves

such a large set of components are already stored in a database and indexed. However,
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it is not obvious that they generalize to an arbitrary notion of dominance such as the

one presented here. On the other hand, our algorithms for finding the non-dominated

set are applicable to any notion of dominance, provided the user preferences are such

that the dominance relation is a partial order.

4.4 Summary

Many applications, e.g., planning, Web service composition, embedded system de-

sign, etc., rely on methods for identifying collections (compositions) of objects (com-

ponents) satisfying some functional specification. Among the compositions that satisfy

the functional specification (feasible compositions), it is often necessary to identify one

or more compositions that are most preferred with respect to user preferences over

non-functional attributes. Of particular interest are settings where user preferences

over attributes are expressed in qualitative rather than quantitative terms [Doyle and

Thomason, 1999].

In this chapter, we have proposed a framework for representing and reasoning with

qualitative preferences over compositions in terms of the qualitative preferences over

attributes of their components; and developed a suite of algorithms to compute the

most preferred feasible compositions, given an algorithm that computes the functionally

feasible compositions. Specifically, we have:

a) Defined a generic aggregation function to compute the valuation of a composition

as a function of the valuations of its components. We have also presented a strict

partial order preference relation for comparing two compositions with respect to

their aggregated valuations of each attribute;

b) Introduced a dominance relation for comparing compositions based on user speci-

fied preferences and established some of its key properties. In particular, we have
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shown that this dominance relation is a strict partial order when intra-attribute

preferences are strict partial orders and relative importance preferences are interval

orders.

c) Developed four algorithms for identifying the most preferred composition(s) with

respect to the user preferences. The first three algorithms first compute the set of

all feasible compositions (solutions) using a functional composition algorithm as a

black box, and then proceed to find the most preferred among them (1) based on the

dominance relation (ComposeAndFilter); and (2) based on the preferred valuations

with respect to the most important attribute(s) (WeaklyCompleteCompose and

AttWeaklyCompleteCompose). The fourth algorithm interleaves the execution of a

functional composition algorithm that produces the set of solutions by iteratively

extending partial solutions and the ordering of partial solutions with respect to

user preferences (InterleaveCompose).

d) Established some key properties of the above algorithms. ComposeAndFilter is

guaranteed to return the set of all non-dominated solutions; WeaklyComplete-

Compose is guaranteed to return a non-empty subset of non-dominated solu-

tions; AttWeaklyCompleteCompose is guaranteed to return at least one of the

non-dominated solutions; and InterleaveCompose is guaranteed to return (i) a

non-empty subset of non-dominated solutions when the dominance relation is an

interval order; and (ii) the entire set of non-dominated solutions when the domi-

nance relation is a weak order.

The proposed techniques for reasoning with preferences over non-functional attributes

are independent of the language used to express the desired functionality ϕ of the compo-

sition, and the method used to check whether a composition C satisfies the desired func-

tionality, i.e., C |= ϕ. Our formalism and algorithms may be applicable to a broad range

of domains including Web service composition (see [Dustdar and Schreiner, 2005, Pathak
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et al., 2008a] for surveys), planning (see [Hendler et al., 1990, Baier and McIlraith, 2008]),

team formation (see [Lappas et al., 2009, Donsbach et al., 2009]) and indeed any setting

that calls for choosing the most preferred solutions from a set of candidate solutions,

where each solution is made up of multiple components.

4.5 Discussion

Our preference formalism is generic and flexible in terms of the choice of aggregation

functions and the overall dominance. In the following, we discuss some of the alternate

choices that one could make in applying our formalism for specific applications.

Aggregation Functions. In our previous work [Santhanam et al., 2008], we had proposed

the use of TCP-net representation with ceteris paribus semantics [Brafman et al., 2006]

for reasoning with preferences in addressing the problem of Web service composition.

We had assumed that the intra-attribute preferences are total orders; however, this as-

sumption does not hold in many practical settings involving qualitative preferences over

non-functional attributes. In this chapter, we have relaxed this requirement, allowing

intra-attribute preferences that are strict partial orders.

In this chapter we demonstrated the use of the summation (e.g., number of credits in

a POS) and worst frontier (e.g., areas of study and instructors) aggregation functions.

In some scenarios, it might be necessary to consider other ways of aggregating the

valuations of the components, for example, using the best frontier denoting the best

possible valuations of the components (i.e., the maximal valuations for each attribute Xi

with respect to ≻i). Any aggregation function can be used in our formalism, provided

that the preference relation over the aggregated valuations is a strict partial order.

Otherwise, the choice of aggregation function and the preference relation to compare

aggregated valuations may impact the properties of the resulting dominance relation,

and as a result, may also affect the soundness and completeness properties of some of
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the proposed algorithms.

The aggregation functions demonstrated in this chapter are independent of how the

components interact or are assembled, i.e., the structure of a composition. However, in

general, it may be necessary for the aggregation function to take into account the struc-

ture and/or other interactions between the valuations of components in a composition.

For example, in evaluating the reliability of a composition, one needs to consider the

precise structure of the composition. The reliability of a composition Ci is the product

of the reliabilities of the components (
n∏

i=1

VWi
(Reliability)) when the components are

arranged in a series configuration [Rausand and Høyland, 2003]. On the other hand,

when the same set of components {Wi} are arranged in a parallel configuration, the

reliability of Ci is computed as (1−
n∏

i=1

(1− VWi
(Reliability))). In general, it might be

necessary to introduce aggregation functions that take into consideration a variety of

factors including the structure, the function, as well as the non-functional attributes of

the composition.

Comparing Sets of Aggregated Valuations. In this chapter, we presented a preference

relation (≻′
i) to compare sets of valuations computed using the worst frontier aggrega-

tion function (Definition 17). This preference relation requires that given two sets of

valuations, every element in the dominated set is preferred to at least one of the elements

in the dominating set of valuations. Other choices of ≻′
i can be used as well, but care

should be taken because the properties of the chosen preference relation may affect the

properties of the dominance (≻d ) relation and the properties of the algorithms. How-

ever, as long as ≻′
i is a strict partial order (irreflexive and transitive), the dominance

relation continues to remain a strict partial order (subject to � being an interval or-

der), and hence the properties of the algorithms hold. This provides the user with a

wide range of preference relations for comparing sets of valuations to choose from (see

[Barbera et al., 2004] for a survey of preferences over sets).
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Dominance and its Properties. The dominance relation (≻d ) adopted in this chapter

is a strict partial order when the intra-attribute preferences are arbitrary strict par-

tial orders and the relative importance is an interval order. It would be interesting to

explore alternative notions of dominance that preserve the rationality of choice, by re-

quiring a different set of properties (e.g., those that satisfy negative-transitivity instead

of transitivity). It would also be of interest to examine the relationships between ≻d

and alternative dominance relations. Some results comparing ≻d with the dominance

relations proposed in [Brafman et al., 2006, Wilson, 2004b, Wilson, 2004a] can be found

in [Santhanam et al., 2010b, Santhanam et al., 2009a].
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CHAPTER 5. Preference Reasoning for Compositional

Systems: Experiments & Results

In this chapter, we present results of experiments we performed to compare the

algorithms developed in Chapter 4 in terms of the following criteria.

a) Quality of solutions produced by the algorithms. The quality is measured

in terms of the percent of the most preferred solutions that an algorithm produces,

and the percent of the overall set of solutions produced by an algorithm that are

most preferred.

b) Performance and efficiency of the algorithms. The performance of an

algorithm is measured in terms of response time (time taken to return the set

of solutions), and the efficiency is measured in terms of the number of times an

algorithm invokes the functional composition algorithm.

5.1 Experimental Setup

5.1.1 Modeling the Search Space of Compositions using Recursive Trees

The uniform recursive tree [Smythe and Mahmoud, 1995] serves as a good choice to

model the search space of partial compositions and their feasible extensions. A tree with

n vertices labeled by 1, 2, . . . n is a recursive tree if the node labeled 1 is distinguished

as the root, and ∀k : 2 ≤ k ≤ n, the labels of the nodes in the unique path from the

root to the node labeled with k form an increasing sequence. A uniform recursive tree
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of n nodes (denoted URTree(n)) is one that is chosen with equal probability from the

space of all such trees.

A simple growth rule can be used to generate a uniform random recursive tree of

n nodes, given such a tree of n − 1 nodes: Given URTree(n − 1), choose uniformly at

random a node k in URTree(n − 1), and add a node labeled n with k as parent to

obtain URTree(n). The properties of this class of uniform random recursive trees are

well studied in the literature of random data structures (see [Smythe and Mahmoud,

1995] for a survey).

The rationale behind choosing the uniform recursive tree data structure to model

the search space of our problem is that the growth rule that generates the recursive

tree is similar in intuition to the process of searching for a feasible composition. Recall

that the search space of partial compositions is generated by the recursive application

of the functional composition algorithm f . The nodes in the recursive tree correspond

to components in the repository of the composition problem. The tree is built starting

with the root node – the search for feasible compositions correspondingly begins with ⊥.

The recursive tree is further grown by attaching new nodes to any of the existing nodes –

this corresponds to extending feasible partial compositions by adding (composing) new

components to any of the existing feasible partial compositions. Finally, the leaves of a

recursive tree at depth d from the root correspond to a (possibly feasible) composition

of d components from the repository in the composition problem.

We now show the precise correspondence between a recursive tree data structure and

a search space of partial compositions.

• Each node k in the tree corresponds to a composition C(k). We denote the parent

of a node k as Pa(k).

• The root node 1 corresponds to the empty composition, i.e., C(1) = ⊥,

• Each node k at level 1 corresponds to a composition of ⊥ with a component W in
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the repository, i.e., C(k) = ⊥⊕W = W,W ∈ R,

• Each node k at level i corresponds to a composition of C(Pa(k)) with a component

W in the repository, i.e., C(k) = C(Pa(k))⊕W,W ∈ R,

• A leaf node l corresponding to a composition C(l) is called a feasible node if

C(l) |= ϕ.

For the purpose of experimentally evaluating our algorithms for finding the most

preferred compositions and to compare them, we generate random recursive trees with

varying number of nodes (or |R|, the number of components in the repository). In the

generated random recursive tree, a certain fraction (feas) of leaves are picked uniformly

randomly and are labeled to be feasible compositions. For each node in the generated

and labeled random recursive tree, the valuation of attributes X = {Xi} (corresponding

to the partial composition it represents) is randomly generated based on the respective

domains ({Di}).

User Preferences

We generate user preferences by generating random partial/total orders for each ≻i and

random interval/total order for � for varying number of attributes m = |X | and domain

size of attributes n = |Di|.

A summary of the simulation parameters is given in Table 5.1.

5.1.2 Implementation of Algorithms

Computing Dominance

In order to check if one valuation dominates another with respect to the user preferences

{≻i} and �, we iterate through all attributes X and check if there exists a witness for

the dominance to hold (see Definition 20).
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Parameter Meaning Range

feas Fraction of leaves in the search tree that are
feasible compositions

{0.25, 0.5, 0.75, 1.0}

|Di| Domain size of preference attributes {2, 4, 6, 8, 10}
|X | Number of preference attributes {2, 4, 6, . . .20}
|R| Number of components in the repository

(nodes in the search tree)
{10, 20, . . .200}

Tf Overhead (in milliseconds) per invocation of
the step-by-step functional composition algo-
rithm f

{1, 10, 100, 1000}

≻i Intra-attribute preference over the values of Xi {po, to}
� Relative importance preference over X {io, to}

Table 5.1 Simulation parameters and their ranges

Computing the most preferred solutions

We implemented algorithms A1, A2, A3 and A4 in Java. Preliminary experiments with

A2 showed that the algorithm did not scale up for large problem instances. In particu-

lar, when the number of attributes are large and dominance testing is computationally

intensive, A2 timed out due to the computation of the non-dominated set multiple times

for each of the most important attributes. Hence we did not proceed to run experiments

on the samples with A2. However, we were able to run experiments with algorithm A3

that arbitrarily picks one of the most important attributes and finds the most preferred

solutions with respect to the intra-attribute preferences of that attribute.

In algorithms A1 and A3 we first compute all solutions using the functional compo-

sition algorithm (simulated by f), whereas in A4, we interleave calls to f with choosing

preferred compositions (partial solutions) at each step. At each step, A4 chooses a subset

of the feasible extensions of the current compositions for further exploration. Table 5.2

gives a brief description of the implemented algorithms.

Table 5.3 shows the attributes that are recorded during the execution of each of the

algorithms A1, A3 and A4 for each composition problem.
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Alg. Name of Algorithm Remarks

A1 ComposeAndF ilter First identifies functionally feasible
compositions; then finds the non-
dominated set of feasible compositions
with respect to ≻d

A2 WeaklyCompleteCompose First identifies functionally feasible
compositions; then finds the non-
dominated set of feasible compositions
with respect to ≻i for the most impor-
tant attributes {Xi}

A3 AttWeaklyCompleteCompose First identifies functionally feasible
compositions; then picks an arbitrary
most important attribute Xi and finds
the non-dominated set of feasible com-
positions with respect to ≻′

i

A4 InterleaveCompose Identifies the non-dominated set of fea-
sible extensions with respect to ≻d

at each step; and recursively identifies
their feasible extensions until all the
non-dominated feasible extensions are
feasible compositions

Table 5.2 Implemented Algorithms

5.2 Results

We compare the algorithms A1, A3, A4 with respect to:

1. Quality of solutions produced by the algorithms, in terms of SP/PF and SP/S

2. Performance and efficiency in terms of running time and number of calls to the

functional composition algorithm f

5.2.0.1 Quality of Solutions

We compare the quality of solutions produced by the algorithms in terms of the

following measures.
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Attribute Meaning Remarks

F Set of solutions (feasible compositions) in a
sample problem instance

F = Cϕ

PF Set of most preferred solutions in a sample
problem instance with respect to the user pref-
erences and the dominance relation

PF = Ψ≻d
(Cϕ) ⊆ F

S Set of solutions produced by the composition
algorithm

SP Set of solutions produced by the composition
algorithm that are also most preferred solutions
with respect to the user preferences and the
dominance relation

SP = PF ∩ S ⊆ S

T Running time of the composition algorithm
(ms)

fcount Number of times the algorithm invokes the
step-by-step functional composition algorithm
f

Table 5.3 Attributes observed during the execution of each algorithm

• SP/PF 1: Proportion of most preferred solutions produced by the algorithm (frac-

tion of all optimal solutions produced by the algorithm). If the algorithm is com-

plete, then SP/PF = 1.

• SP/S: Proportion of solutions produced by the algorithm that are most preferred

(fraction of solutions produced solutions, that are optimal). If the algorithm is

sound, then SP/S = 1.

The algorithm A1 exhaustively searches the entire space of compositions to identify

all the feasible compositions F , and then finds the most preferred among them with

respect to the user preferences � and {≻i}. Because it computes the set Ψ≻d
(F ), we

observed that for A1, SP = PF = S, i.e., it is both sound (finds only the most preferred

solutions) and complete (finds all the most preferred solutions).

1For the sake of readability, we use the notation used to denote the set to denote its cardinality as
well, e.g., SP is used to denote both the set and its cardinality (|SP |).
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We next compare the algorithms A3 and A4 with respect to SP/PF and SP/S

for various types of ordering restrictions on the user preferences {≻i} and �. Table 5.4

reports results for the following combinations: (i) � is an interval order, {≻i} are partial

orders; (ii) � is an interval order, {≻i} are total orders; (iii) � is a total order, {≻i} are

partial orders; and (iv) � is a total order, {≻i} are total orders.

Figures 5.1 and 5.2 show a comparison of the algorithms A3 and A4 with respect

to the proportion of most preferred solutions produced by the algorithms (SP/PF ) and

proportion of solutions produced by the algorithms that are most preferred (SP/S),

when the intra-attribute preferences are partial orders and relative importance is an

interval order ((a) - (b)), or a total order ((c) - (d)) respectively.

� ≻i A3 A4

io po 77.50 83.95
io to 71.00 100.00
to po 100.00 85.88
to to 100.00 100.00

Table 5.4 Comparison of SP/PF for algorithms A3 and A4 with respect
to various ordering restrictions on {≻i},�. The percent of prob-
lem instances for which SP/PF = 1 is shown in each row with
respect to the corresponding ordering restrictions on the prefer-
ence relations � and {≻i}. Plots from simulation experiments
are shown in Figures 5.1 and 5.2.

Comparison of SP/PF

• In general, most of the most preferred solutions were found by both the algorithms

(see Table 5.4).

• We observe that when relative importance (�) is a total order and {≻i} are ar-

bitrary partial orders, 100% of the most preferred solutions are produced by A3.

This suggests that there may be some relationship between ≻′
i and ≻d under
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this condition. The precise implications of this observation is explored later in

Section 5.3.

� ≻i A3 A4

io po 41.78 98.45
io to 30.78 100.00
to po 33.90 96.98
to to 27.30 100.00

Table 5.5 Comparison of SP/S for algorithms A3 and A4 with respect to
various ordering restrictions on {≻i},�. The percent of problem
instances for which SP/S = 1 is shown in each row with respect
to the corresponding ordering restrictions on the preference rela-
tions � and {≻i}. Plots from simulation experiments are shown
in Figures 5.1 and 5.2.

Comparison of SP/S

• In general, most of the solutions that were found by the interleaved algorithm A4

were the most preferred solutions (see Table 5.5). On the other hand, algorithm

A3 produced many solutions that were not the most preferred.

• The second (and fourth) row(s) of Tables 5.5 and 5.4 suggests that when intra-

attribute preferences ({≻i}) are total orders and � is an arbitrary interval order,

the interleaved algorithm A4 is sound and complete, i.e., it produces exactly the

non-dominated set of solutions with respect to ≻d . In the light of Theorems 7

and 9, this observation suggests a possible relationship between the properties of

≻d and {≻i}, � which we will explore in further detail in Section 5.3.

5.2.0.2 Performance and Efficiency

We compare the performance and efficiency of A3, A4 in terms of the number of times

the functional composition algorithm f is invoked, and running time (in milliseconds)
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Relative Importance: Interval Order; Intra-attribute Preference: Partial Order 

 

Relative Importance: Total Order; Intra-attribute Preference: Partial Order 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0
.0

1
0

0

0
.0

3
0

0

0
.0

5
0

0

0
.0

7
0

0

0
.0

9
0

0

0
.2

0
0

0

0
.4

0
0

0

0
.6

0
0

0

0
.8

0
0

0

0
.9

1
0

0

0
.9

3
0

0

0
.9

5
0

0

0
.9

7
0

0

0
.9

9
0

0

F
re

q
u

e
n

cy

(a) SP / PF for A3 and A4

SP / PF A3 SP / PF A4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
.0

1
0

0

0
.0

3
0

0

0
.0

5
0

0

0
.0

7
0

0

0
.0

9
0

0

0
.2

0
0

0

0
.4

0
0

0

0
.6

0
0

0

0
.8

0
0

0

0
.9

1
0

0

0
.9

3
0

0

0
.9

5
0

0

0
.9

7
0

0

0
.9

9
0

0

F
re

q
u

e
n

cy

(b) SP / S for A3 and A4

SP / S A3 SP / S A4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
.0

1
0

0

0
.0

3
0

0

0
.0

5
0

0

0
.0

7
0

0

0
.0

9
0

0

0
.2

0
0

0

0
.4

0
0

0

0
.6

0
0

0

0
.8

0
0

0

0
.9

1
0

0

0
.9

3
0

0

0
.9

5
0

0

0
.9

7
0

0

0
.9

9
0

0

F
re

q
u

e
n

cy

(c) SP / PF for A3 and A4

SP / PF A3 SP / PF A4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0
.0

1
0

0

0
.0

3
0

0

0
.0

5
0

0

0
.0

7
0

0

0
.0

9
0

0

0
.2

0
0

0

0
.4

0
0

0

0
.6

0
0

0

0
.8

0
0

0

0
.9

1
0

0

0
.9

3
0

0

0
.9

5
0

0

0
.9

7
0

0

0
.9

9
0

0

F
re

q
u

e
n

cy

(d) SP / S for A3 and A4
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Figure 5.1 A comparison of the algorithms A3 and A4 with respect to
SP/PF and SP/S.
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Relative Importance: Interval Order; Intra-attribute Preference: Total Order 
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Figure 5.2 A comparison of the algorithms A3 and A4 with respect to
SP/PF and SP/S.
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for the algorithms to compute their solutions.

Number of calls to functional composition f

The plots in Figure 5.3 show the results of our experiments comparing the algorithms

A1, A3 and A4 with respect to the number of times they invoke the step-by-step func-

tional composition algorithm during their execution under various ordering restrictions

on the intra-attribute preferences (≻i) and relative importance (�). The four distinct

“bands” seen in the plots correspond to various fractions of leaves in the search tree of

the problem instance that are feasible compositions: feas = 0.25, 0.5, 0.75, 1.0.

The results yield the following observations.

• In general, our experiments show that the interleaved algorithm A4 makes lesser

number of calls to f compared to A3 (see Figure 5.3). This is because A4 explores

only the most preferred subset of the available feasible extensions at each step in

the search. On the other hand, A3 exhaustively explores all feasible extensions at

each step.

• When the intra-attribute preferences {≻i} are total orders, the difference in the

number of calls to f made by A3 and A4 is more pronounced. This can be ex-

plained by the fact that in this case the dominance relation is larger, due to which

the number of incomparable pairs of compositions is smaller. Therefore, at each

interleaving step the non-dominated set computed for extension is smaller.

• In the case of both the algorithms A3, A4, the number of calls to f decreases as

the fraction of feasible compositions (feas) increases.

Running time

We observed that the running times of both algorithms A3, A4 are dependent on two

key factors:
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Figure 5.3 Number of invocations of functional composition algorithm for
A1, A3 and A4 when feas = 0.25, 0.5, 0.75, 1.0.
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• fdelay, the time taken per execution of the functional composition at each step

• Complexity of dominance testing which is in turn a function of |Di|, |X | and the

properties of {≻i},� (see Section 4.2.6.1).

In order to understand the effect of fdelay on the running times of the algorithms,

we ran experiments with fdelay = 10ms and fdelay = 1000ms. Figures 5.4 and 5.5

show a comparison of the algorithms A1, A3 and A4 with respect to their running times

as a function of the number of feasible compositions, when the each invocation step

in the step-by-step functional composition algorithm has a overhead of 10 milliseconds

and 1000 milliseconds respectively. The plots (a) - (d) correspond to results of running

the algorithms on simulated problem instances with various ordering restrictions on the

intra-attribute preferences (≻i) and relative importance (�). The four distinct “bands”

seen in the plots correspond to various fractions of leaves in the search tree of the problem

instance that are feasible compositions: feas = 0.25, 0.5, 0.75, 1.0.

The results yield the following observations.

• In general, the interleaved algorithm A4 is faster when the intra-attribute prefer-

ences (≻i) are total orders, as compared to the case when they are partial orders.

• The algorithm A3 almost always outperforms the blind search algorithm A1 in

terms of running time, because A3 computes the non-dominated set in the last step

with respect to the intra-attribute preference over the valuations of one attribute

≻′
i (in place of the dominance relation ≻d used by A1).

• The interleaved algorithm A4 is more sensitive to the complexity of dominance

than A1 and A3, because at each step A4 computes the non-dominated subset

of extensions to explore. On the other hand, A1 and A3 involve computation of

dominance only in the last step. A3 is faster than A1, more than A4, because

it computes the non-dominated set with respect to the intra-attribute preference
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over the valuations of one attribute ≻′
i (in place of the dominance relation ≻d

used by A1 and A4).

• Algorithms A1 and A3 are more sensitive to fdelay than the interleaved algorithm

A4, because at each step A1 and A3 explore all feasible extensions. On the other

hand, A4 only explores the preferred subset of the feasible extensions at each step.

• The overall running time of A1, A3 and A4 depend on the relative trade-offs

among |Di|, |X |, the properties of {≻i},� (those that influence the complexity of

dominance testing) on the one hand and fdelay on the other.

5.3 Analysis of Experimental Results

Apart from demonstrating the feasibility of our algorithms in various settings, the

experimental results also point us towards possible relationships between the properties

of the algorithms and dominance relation under various restrictions on the intra-attribute

and relative importance preferences. In particular, a closer observation of the quality

of solutions produced by the algorithms (see Tables 5.4 and 5.5) under various ordering

restrictions on the user preferences lead us to the following conjectures/results.

• When relative importance (�) is a total order and {≻i} are arbitrary partial orders,

100% of the most preferred solutions are produced by A3 (Table 5.4). This suggests

that ≻′
i ⊆ ≻d , because in such a case A3 would be complete (in the sense that

it produces all the most preferred solutions, or those that are non-dominated with

respect to ≻d ). In the following, we prove Propositions 17 and 18 based on this

insight.

• Table 5.5 suggests that when intra-attribute preferences ({≻i}) are total orders

and � is an arbitrary interval order, the interleaved algorithm A4 is sound and
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Figure 5.4 Running times of algorithms A1, A3 and A4 with 10 milliseconds
per functional composition step for feas = 0.25, 0.5,0.75, 1.0.
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Figure 5.5 Running times of algorithms A1, A3 and A4 with
1000 milliseconds per functional composition step for
feas = 0.25, 0.5,0.75, 1.0 .
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complete, i.e., it produces exactly the non-dominated set of solutions with respect

to ≻d . Secondly, Theorems 7 and 9 give sufficient conditions for the soundness

and weakness of A4 in terms of the properties of ≻d : A4 is complete if ≻d is

interval ordered, and A4 is sound if ≻d is a weak order. These two observations

suggest a direct relationship between the properties of ≻d and {≻i}, �. This

leads us to a conjecture (Conjecture 1), part of which we prove (Theorem 10) in

the following.

Proposition 17. If � is a total order and Xi is the most important attribute in X with

respect to �, then ≻′
i ⊆ ≻d .

Proof. Let Xi be the (unique) most important attribute in X . Suppose that U(Xi)

≻′
iV(Xi), thereby making Xi a potential witness for U ≻d V. Since Xi is the most

important attribute, ∀Xk ∈ X : Xi �Xk, the second clause in the definition of U ≻d V

trivially holds. Hence, Xi is a witness for U ≻d V (see Definition 20).

Note that the proof of the above proposition only made use of the fact that ∀Xk ∈

X : Xi � Xk, which is a weaker condition than � being a total order. Hence, we have

the following more general result.

Proposition 18. If � is such that there is a unique most important attribute Xi, i.e.,

∃Xi ∈ X : ∀Xk ∈ X \ {Xi} : Xi �Xk, then ≻′
i ⊆ ≻d .

Because ≻′
i ⊆ ≻d ⇒ Ψ≻d

(S) ⊆ Ψ≻′

i
(S) for any set S, the above proposition also

gives a condition under which A3 is complete. This is not surprising since under this

condition A3 is the same as A2 (see Section 4.2.4), and hence the completeness of A3

follows from Proposition 14.

Conjecture 1. If {≻i} are total orders and � is an arbitrary interval order, then ≻d

is an weak order.
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We now prove a restricted version of the above conjecture, when both � as well as

{≻i} are total orders.

Theorem 10. If � as well as {≻i} are total orders, then ≻d is a weak order.

Proof. ≻d is a weak order if and only if it is a strict partial order and negatively

transitive. We have already shown that ≻d is a strict partial order in Theorem 1, and

hence we are only left with proving that ≻d is negatively transitive, i.e., U 6 ≻d V∧V 6 ≻d

Z ⇒ U 6≻d Z.

First, we note that since ≻i is a total order, ≻′
i is also a total order (see Definition 17).

U 6 ≻d V ⇒ (∀Xi : U(Xi)≻′
iV(Xi)⇒ ∃Xk : (Xk�Xi∧U(Xk) 6 �

′
k V(Xk))) (Xk ∼� Xi

is not possible because � is a total order). (1)

Let Xi and Xj be the most important attributes such that U(Xi) ≻′
i V(Xi) and

V(Xj)≻′
jZ(Xj) respectively. (2)

Let Xp and Xq be the most important attributes s.t. Xp � Xi ∧ U(Xp) 6 �
′
p V(Xp)

and Xq �Xj ∧ V(Xq) 6 �
′
q Z(Xq) respectively (such Xp and Xq must exist by (1)). (3)

Case 1 Both Xi and Xj as defined in (2) exist (cases when such Xi and/or Xj

don’t exist will be dealt with separately).

Three sub-cases arise: Xp �Xq, Xq �Xp and Xp = Xq.

Case 1a: Suppose that Xp �Xq (see Figure 5.6). (4)

• From (3) we know that Xp �Xi ∧ U(Xp) 6 �
′
p V(Xp), i.e., V(Xp)≻′

pU(Xp). (5)

• From (3) and (4) we know that V(Xp)�
′
pZ(Xp), because Xq is the most important

attribute that is also more important than Xj and V(Xq) 6 �
′
q Z(Xq), and Xp is

more important than Xq (and hence Xj as well). (6)

• But because Xj is the most important attribute with V(Xj)≻′
jZ(Xj), and Xp�Xj

(since Xq � Xj and Xp � Xq), we have V(Xp) 6 ≻′
p Z(Xp) (as Xj is the most
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important attribute with V(Xj)≻′
jZ(Xj), using (2)). Along with (6), this means

that V(Xp) = Z(Xp). (7)

• From (5) and (7), Z(Xp)≻′
pU(Xp). (8)

• Also, ∀Xk : Xk � Xp ⇒ U(Xk) = V(Xk) ∧ V(Xk) = Z(Xk) (because Xk is more

important than Xi, Xj and Xp, Xq). (9)

• From (8) and (9), Z ≻d U with Xp as witness. Hence, U 6 ≻d Z.

Xp

Xq

U(Xk) = V(Xk)

U(Xi) ≻
′
i V(Xi)

V(Xj) ≻′j Z(Xj)

V(Xk) = Z(Xk)

Figure 5.6 The case when Xp �Xq

Case 1b: Suppose that Xq �Xp. The claim holds by symmetry.

Case 1c: Suppose that Xp = Xq.

• From (3) we know that Xp �Xi ∧ U(Xp) 6 �
′
p V(Xp), i.e., V(Xp)≻′

pU(Xp).

• Similarly, Z(Xp)≻′
pV(Xp).

• Hence, Z(Xp)≻′
pU(Xp). Moreover, ∀Xk : Xk �Xp ⇒ U(Xk) = V(Xk) ∧ V(Xk) =

Z(Xk) (because Xk is more important than Xi, Xj and Xp, Xq).

• Therefore, Z ≻d U with Xp as witness. Hence, U 6 ≻d Z.
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Case 2 : If Xi (say) does not exist, then ∀Xi : U(Xi) 6 ≻′
i V(Xi). Let Xp be

the most important attribute s.t. V(Xp)≻′
pU(Xp) (if Xp does not exist, then trivially

U 6 ≻d Z because U = V). (10)

Case 2a: Suppose Xp � Xq. Then ∀Xk : Xk � Xp ⇒ V(Xk) = Z(Xk) (because

Xk � Xq as well). Moreover, Xp � Xq ⇒ V(Xp) = Z(Xp). Hence, Z ≻d U with Xp as

witness and therefore U 6 ≻d Z.

Case 2b: Suppose Xq�Xp. Then ∀Xk : Xk�Xq ⇒ U(Xk) = V(Xk) (because Xk�Xp

as well). Moreover, Xq �Xp ⇒ U(Xq) = V(Xq). Hence, Z ≻d U with Xq as the witness

and therefore U 6 ≻d Z.

Case 2c: Suppose Xp = Xq. Then ∀Xk : Xk � Xp ⇒ V(Xk) = Z(Xk) (because

Xk �Xq as well) and similarly ∀Xk : Xk �Xq ⇒ U(Xk) = V(Xk) (because Xk �Xp as

well). Moreover, since V(Xq) 6 �
′
q Z(Xq) (by (3)), V(Xp)≻′

pU(Xp) (using (10)) we have

Z(Xp)≻
′
pU(Xp). Hence, Z ≻d U with Xp as the witness and therefore U 6 ≻d Z.

Case 3 : If Xj (say) does not exist, the proof is symmetric to Case 2.

Case 4 : Suppose that both Xi and Xj do not exist. Then, for any variable

Xi, V(Xi)�
′
iU(Xi) and Z(Xi)�

′
iV(Xi), i.e., ∀Xi : Z(Xi)�

′
iU(Xi). Hence, there is no

witness for U ≻d Z, or U 6 ≻d Z.

Cases 1 - 4 are exhaustive, and in each case U 6 ≻d Z. This completes the proof.

Remark.

As stated, Conjecture 1 and Theorem 10 apply whenever {≻i} are totally ordered, and

when using our method of comparing two aggregated valuations (≻′
i) (see Definition 17).

More generally, we note that they hold whenever {≻′
i} are total orders, regardless of the

chosen method of comparing two aggregated valuations, and regardless of the properties

of the input intra-attribute preferences {≻i}. For example, suppose that {≻i} are ranked
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weak orders (i.e., not total orders). As such, Conjecture 1 and Theorem 10 do not apply.

However, for each attribute Xi if we define Φi(S) to be the rank number corresponding

to the worst frontier of S, and ≻′
i as the natural total order over the ranks in the weak

order, then the consequences of Conjecture 1 and Theorem 10 hold.

We summarize the theoretical results relating the properties of the dominance relation

and the properties of the preference relations � and {≻′
i} in Table 5.6.

� ≻′
i ≻d Remarks

io po po Theorem 1
io to wo Conjecture 1
to to wo Theorem 10

Table 5.6 Summary of results and conjectures relating to the properties of
≻d with respect to the properties of � and {≻′

i}.

5.4 Summary and Discussion

In the following, we summarize the contents of this chapter.

a) Performed simulation experiments to compare the algorithms with respect to (i)

the ratio of most preferred solutions produced to the actual set of most preferred

solutions, and the ratio of the most preferred solutions produced to the entire set

of solutions produced by the algorithm; (ii) their running times as a function of the

search space and the overhead in each call to the functional composition algorithm;

and (iii) the number of calls each algorithm makes to the functional composition

algorithm during the course of its execution. The results showed the feasibility of

our algorithms for composition problems involving hundreds of components.

b) Analyzed the results of experiments to obtain additional theoretical properties of

the dominance relation as a function of the properties of the underlying intra-
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attribute preference relations and relative importance preference relation. In par-

ticular, we obtained non-trivial results as a consequence of our analysis of exper-

imental results, which were not known apriori, including conditions under which

the dominance relation is a weak order. In particular:

i) when the relative importance preference of the user is such that there is a

unique most important attribute (Xi, that is more important than all others),

then the dominance relation includes the intra-attribute preferences aggre-

gated valuations ({≻′
i}) and the algorithm A3 is complete (it produces all

the solutions that are non-dominated with respect to ≻d );

ii) when the intra-attribute preferences and the relative importance are totally

ordered, the dominance relation is a weak order. Further, we also conjectured

that (ii) holds even when the relative importance is an interval order.

These conjectures/results are significant because they give the properties of the

dominance relation directly as a function of the input user preferences. In turn,

they also throw light on the soundness, weak-completeness and/or completeness

properties of the algorithms.

The current implementation of dominance testing with respect to ≻d is based on

iteratively searching all the attributes to find a witness. It would be interesting to

compare this with other methods for dominance testing such as the one proposed in

[Santhanam et al., 2010a] that uses efficient model checking techniques. We would

also like to use other multi-attribute preference formalisms that include conditional

preferences in our framework for compositional systems and compare the performance

of the resulting implementation with the current implementation.
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CHAPTER 6. Preference Reasoning for Compositional

Systems: Applications to Web Services

6.1 Service-oriented Systems as Compositional Systems

Service-oriented computing [Bichler and Lin, 2006, Papazoglou, 2003, Huhns and

Singh, 2005] offers a powerful approach to assemble complex distributed applications

from independently developed software components in many application domains such

as e-Science, e-Business and e-Government. Consequently, there is a growing body of

work on specification, discovery, selection, and composition of services.

Successful development and deployment of service oriented software applications re-

lies on effective solution of three inter-related problems:

• (a) service composition [Pathak et al., 2007] - assembling a composite service (or

composition) from a set of components in a repository that satisfy the given re-

quirements;

• (b) substitution [Pathak et al., 2007] - identifying appropriate alternatives to re-

place failed or unavailable component services in a composition; and

• (c) adaptation [Chafle et al., 2006, Pathak et al., 2006b] - altering existing compos-

ite services in response to changes in the functional/non-functional requirements,

and/or the repository of available components.

Given a set of functional/non-functional requirements and a repository, the user seeks
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a composite service assembled from the components in the repository that satisfies the

requirements.

In this chapter, we demonstrate the use of the qualitative preference representa-

tion and reasoning techniques that we developed in our earlier chapters to address the

problems of Web service composition in Section 6.2, substitution in Section 6.2 and

adaptation in Section 6.2.

6.2 Web Service Composition

In many service-oriented applications, trade-offs involving

non-functional attributes e.g., availability, performance play an important role in select-

ing component services in assembling a feasible composition, i.e., a composite service

that achieves the desired functionality. We present TCP-Compose⋆, an algorithm for ser-

vice composition that identifies, from a set of candidate solutions that achieve the desired

functionality, a set of composite services that are non-dominated by any other candidate

with respect to the user-specified qualitative preferences over non-functional attributes.

We use TCP-net, a graphical modeling paradigm for representing and reasoning with

qualitative preferences and importance. We propose a heuristic for estimating the pref-

erence ordering over the different choices at each stage in the composition to improve the

efficiency of TCP-Compose⋆. We establish the conditions under which TCP-Compose⋆ is

guaranteed to generate a set of composite services that (a) achieve the desired functional-

ity and (b) constitute a non-dominated set of solutions with respect to the user-specified

preferences and tradeoffs over the non-functional attributes.

6.2.1 Background

The focus of this section is on service composition, i.e., the problem of assembling a

composite service (goal service) from component services based on user preferences over
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non-functional attributes.

Functional requirements specify the desired goal service functionality. Barring a few

notable exceptions [Zeng et al., 2003, Zeng et al., 2004, Yu and Lin, 2005, Berbner et al.,

2006], much of the work on service composition has focused on algorithms for assembly

of composite services from functional specifications. Some of the major approaches

to service composition based on functional specifications include: AI planning [Pistore

et al., 2005b, Traverso and Pistore, 2004, Sirin et al., 2004, Shaparau et al., 2006], labeled

transition systems [Pathak et al., 2006b, Pathak et al., 2007, Pathak et al., 2008b], Petri

nets [Hamadi and Benatallah, 2003], among others. (The interested reader is referred to

[Dustdar and Schreiner, 2005, Pathak et al., 2008a, Pistore et al., 2005a] for surveys).

Non-functional requirements refer to aspects such as security, reliability, performance,

and cost of the goal service. For example, among the composite services that achieve

the desired functionality, a user might prefer a more secure service over a less secure

one; or one with a lower cost over one with a higher cost. Such preferences may be

quantitative or qualitative. In many settings, a user might need to trade off one non-

functional attribute against another (e.g., performance against cost); In others, it might

be useful to assign relative importance to different non-functional attributes (e.g., se-

curity being more important than performance). Hence, there is an urgent need for

principled methods that incorporate consideration of user-specified preferences with re-

spect to the non-functional attributes, and the relative importance of the different non

functional attributes. Of particular interest are algorithms that ensure that a set of

solutions generated constitute a non-dominated set. We say that a set N of composite

services is a non-dominated set if there is no composite service that is not in N that is

strictly preferred over one or more of the composite services in N with respect to a set of

user-specified preferences over non-functional attributes (and their relative importance).

Against this background, we present a procedure, TCP-Compose⋆ for generating, given

(i) a set of functional specifications; (ii) a set of preferences with respect to non-functional
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attributes and their relative importance; (iii) a repository of candidate services with spec-

ified input-output behaviors and non-functional attributes; and (iv) any sound functional

composition algorithm for assembling, from a repository of component services: a set of

composite services that (a) achieve the desired functionality and (b) are non-dominated

with respect to the user-specified preferences over non-functional attributes by any other

composite service in the solution set of the algorithm used for functional specification

based service composition.

TCP-Compose⋆ makes use of Tradeoff-enhanced Conditional Preference Network (TCP-

net) [Brafman et al., 2006], a variant of Conditional Preference Network [Boutilier et al.,

2004], a framework for representing and reasoning with qualitative preferences. CP -net

provides a compact representation of user-specified preferences with respect to non-

functional attributes, by taking advantage of the independence or conditional indepen-

dence of user preferences with respect to an attribute from preferences with respect to

other attributes. TCP -net extends the CP-net framework by allowing the specification

of the relative importance of different attributes (e.g., security is more important than

cost).

TCP-Compose⋆ uses a heuristic estimate of the preference ordering of alternative par-

tial solutions to a service composition problem that corresponds to different choices of

each component service, to improve the efficiency of search for a set of non-dominated

solutions. We establish the conditions under which the proposed algorithm is guaranteed

to find a set of non-dominated compositions with respect to user-specified qualitative

preferences over possible values of each non-functional attribute and the relative impor-

tance of different non-functional attributes.

The rest of the section is organized as follows: Section 6.2.2 introduces the problem

of service composition from user-specified functional and non-functional specifications;

Section 6.2.4 describes the algorithm TCP-Compose⋆ and establishes the conditions un-

der which TCP-Compose⋆ is guaranteed to find the set of non-dominated compositions
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Figure 6.1 Goal Service

with respect to user-specified qualitative preferences over possible values of each non-

functional attribute and the relative importance of different non-functional attributes;

Section 6.2.5 concludes with a summary, discussion of related work, and an outline of

some directions for further research.

6.2.2 Problem Specification

We introduce the problem of service composition from user-specified functional and

non-functional requirements using a simple example. Suppose a user is interested in

assembling a goal service G shown in Figure 6.1 from a repository of services R =

{b1, b2, p1, p2, p3, s1, s2, q1, q2, q3}–where bi’s are book buying services, si’s are shipment

services and pi’s and qi’s are payment services that can work with bi’s and si’s respec-

tively. Suppose (p3, q2), (b2, s2), (b2, q2), (b2, q3) are functionally incompatible and hence

cannot be used together in any valid composition. The goal service should allow the

user to buy book(s) from an online store, pay the store through a credit card service,

arrange for shipping the book through a shipment service and pay for the shipping. In

Figure 6.1, each of the steps in the goal service is annotated with the set of services from

the repository that provide the respective functionality.

What we have so far is an informal specification of a service composition task based on
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Preference Variable Domain of Preference Variable

Reliability(R) {LR, HR}
Security (S) {LS, MS, HS}
Availability(A) {LA, HA}

Table 6.1 Domain Definition

user-specified functional requirements. We now turn to specification of user preferences

with respect to three non-functional attributes: reliability, security, and availability of

the goal service denoted by R, S, and A respectively. Suppose the available services

can have Low (LR) or High (HR) reliability; Low (LS), Medium (MS) or High (HS)

security; and Low (LA) or High (HA) availability as shown in Table 1. Assume that

the following non-functional attributes are known of each of the component services:

b1 : LR, b2 : HR, p1 : LS, p2 : MS, p3 : HS, s1 : LA, s2 : HR, q1 : LS , q2 : MS , q3 : HS.

Now suppose that the user’s preference with respect to security level is not indepen-

dent of the reliability of the service. Suppose further that when the reliability is low,

the user prefers high security; and when reliability is high the user is willing to settle

for lower security (say, because of the prohibitive cost of achieving both high security

and reliability); Suppose further that the user prefers high availability to low availabil-

ity irrespective of the reliability and security of the service. Such information can be

represented concisely using a CP-net with three nodes denoting the three attributes R,

S, and A. The single headed arrows (e.g., from R to S) denote dependence among user

preferences with respect to the attributes under consideration. The qualitative prefer-

ences of the user with respect to each attribute (conditioned on the preferences over

attributes that such preference is dependent on) are specified by the conditional pref-

erence table (CPT) that annotate each node (Figure 6.2(a)). Suppose further that the

user attaches greater importance to availability relative to security. Such assertions of

relative importance of one attribute over another are represented using double headed
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Figure 6.2 Example CP-net and TCP-net

arrows in TCP-net shown in Figure 6.2(b). The information regarding preferences with

respect to R, S, and A in Figure 6.2(b) are the same as those shown in Figure 6.2(a).

For more background on CP-nets and TCP-nets, please see Chapter 1.

Given the preferences with respect to the non-functional attributes and their relative

importance, our task is to identify from the solution space, i.e., the set of composite

services that satisfy the user-specified functional requirements, a subset that forms a

non-dominated set with respect to a set of user-specified preferences over non-functional

attributes (and tradeoffs among them) that are captured by a TCP-net. It should be

noted that a unique optimal composition exists only when the corresponding TCP-net

induces a total ordering over the set of candidate feasible composite services, that is, the

set of composite services that satisfy the user-specified functionality. TCP-Compose⋆ does

not assume the existence of a total order induced by the TCP-net over user-specified

preferences and relative importance among attributes. Instead, we return a set of feasible

composite services that constitute a non-dominated set with respect to the TCP-net that

reflects the users preferences and tradeoffs with respect to the non-functional attributes.

Definition 26 (Completion). [Brafman et al., 2006] The completion of a partial as-

signment z is defined as a complete assignment or an outcome consistent with z, denoted

Comp(z). By consistency, we mean that if a preference attribute Xi has a valuation vi
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in z then the valuation of Xi is also vi in Comp(z).

Definition 27 (Most Preferred Completion). [Brafman et al., 2006] The most pre-

ferred completion of a partial assignment z, denoted PrefComp(z,N ) is defined as

a completion of z that is preferentially optimal with respect to the TCP-Net N , i.e.

∄ o ∈ O : o ≻ PrefComp(z,N ) such that o is a completion of z and consistent with z.

Remarks.

1. We restrict our discussion to the class of conditionally acyclic TCP-nets that have

been shown to be satisfiable with respect to a preference relation [Brafman et al.,

2006].

2. Given a conditionally acyclic TCP-net, it is possible to order the set of all outcomes

O [Brafman et al., 2006]. In other words, there exists a total order (that can be

obtained using a topological sort) of the set of outcomes O that is consistent with

the given TCP-net. However, several orderings of O can be consistent with a

given conditionally acyclic TCP-net. For example, in a total preorder, there could

be an outcome o such that ∄o′ ≻ o with respect to N , but one cannot define

o as the unique most preferred outcome. In our example, considering tuples of

valuations of the non-functional attributes of a service, if the user did not give the

information that R is relatively more important than A, then we would not be

able to assert a preference among compositions with outcomes o1 = (HR, LS, HA)

and o2 = (LR, HS, LA) (where subscripts denote the corresponding non-functional

attributes reliability (R), security (S) and availability (A)). In this case, the user

may like the composition system to return both the compositions if both o1 and

o2 are non-dominated, i.e., ∄o′ ≻ o1 and ∄o′ ≻ o2. The algorithm we present,

TCP-Compose⋆ guarantees that in the absence of a unique total order over the
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outcomes, the outcome corresponding to each composition in the solution set is

non-dominated by the outcome corresponding to any other feasible composition.

3. We also note that there is another variant of the TCP-net, known as UCP-nets

[Brafman et al., 2006] that capture quantitative preferences and relative impor-

tance information using utility functions. However, since we are not dealing with

quantitative preferences, we stick to the basic qualitative TCP-nets.

6.2.3 Utilizing TCP-nets in Web service composition

We now proceed to describe how TCP-nets can be used to model qualitative prefer-

ences during Web service composition. For this we will use dominance queries [Brafman

et al., 2006] of the form o
?
≻ o′ with respect to N (in other words whether o is preferred

to or dominates o′). The problem of Web service composition is to assemble a composite

service that achieves a desired functionality from a set of component services. More

precisely, we have:

Definition 28 (Web service composition problem). Given a target or goal service G

and a repository of available services R = {W1,W2 . . .Wn}, Web service composition

amounts to creating a set of composite services C = {C1, C2 . . . Cm} such that ∀i ≤

m,Ci = Wi1⊕Wi2 . . .⊕Wik and ∀l ≤ ik,Wl ∈ R such that Ci is functionally equivalent 1

to the G, denoted by Ci ≡ G. In the above, ⊕ is the composition operator for composing

two services.

Note that ⊕ is a generic composition operator and Wi1 ,Wi2 . . .Wik is an arbitrary

ordering of the components in Ci such that Wij is selected before Wij+1
in constructing

Ci. We now proceed to describe an approach for using the TCP-net representation of

1Functional equivalence can be defined in many ways depending on the particular formalism used to
describe the services. For example, if labeled transition systems are used for describing the services,
checking the functional equivalence of a composite service to a goal service reduces to checking the
bisimulation equivalence of the corresponding labeled transition systems [Pathak et al., 2006b, Pathak
et al., 2007]
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user-specified non-functional requirements to guide service composition using any of the

standard methods that can generate compositions that satisfy user-specified functional

requirements.

6.2.4 TCP-Compose⋆

We present an algorithm, TCP-Compose⋆, that uses a preference guided heuristic to

come up with the most preferred compositions among the candidates.

6.2.4.1 Search Space of TCP-Compose⋆

We cast the problem of assembling from a set of available component services, a

composite service with the desired functionality as a state space search problem. The

empty composition ⊥ is the start state; the set of feasible extensions using one of the

available components from any given state define the successors of that state; and the set

of feasible candidate compositions correspond to the goal states. The cost function at

any state is given by the preference valuation of the partial composition corresponding

to that state.

Definition 29 (Feasible Extension). A feasible extension to a partial composition P is

defined as a partial composition P ′ = P ⊕Wi,Wi ∈ R such that the partial composition

P ′ is functionally equivalent to a part of the goal service.

Let N be a TCP-net with a set of preference attributes V = {X1, X2, . . .Xp} with

finite domainsD(X1), D(X2), . . .D(Xk) respectively where each preference attribute cor-

responds to a non-functional attribute of a composition. We assume that such a TCP-net

specification is given by the user as input to the algorithm TCP-Compose⋆.

Each of the leaf nodes is a goal node and corresponds to valid or feasible candidate

composite services that are functionally equivalent to the goal service. Note that the the

nodes of the tree may have varying but finite branching factors. Figure 6.3 illustrates the
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Figure 6.3 Search Space for TCP-Compose⋆ when the TCP-net does not in-
duce a total order over the set of valuations

search space for our goal service given in Figure 6.1 with respect to the TCP-net given

in Figure 6.2. The shaded nodes correspond to partial compositions that were actually

expanded further. The numbers in the boxes next the nodes show the order in which the

corresponding nodes are expanded. The nodes that are not shaded are generated but not

further pursued by the algorithm: For example, although TCP-Compose⋆ explores partial

composition b1 ⊕ p1, its feasible extension b1 ⊕ p1 ⊕ s1 is not explored. The annotation

V al denotes the preference valuation and β denotes the most preferred completion of

the partial composition corresponding to each node. They are formally defined below.

Definition 30 (Preference Valuation). Preference valuation is a function F : W ×X →
⋃

(D(Xi)∪ {−}), where W = {W1,W2 . . .Wn}, X =
⋃
Xi. The value {−} denotes that

the valuation of the corresponding attribute is unknown. We denote the valuation of an

attribute Xi in a Web service W as F (W )(Xi) = vi, vi ∈ D(Xi)∪{−}. We define the val-

uation of an attribute Xi in a composition of two services Wi,Wj as F (Wi⊕Wj)(Xi) =

F (Wi)(Xi) ⊙ F (Wj)(Xi), where
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F (Wi)(Xp) ⊙ F (Wj)(Xp) =






F (Wj)(Xp), F (Wi)(Xp) ≻ F (Wj)(Xp)

F (Wi)(Xp), otherwise.

The preference valuation of a partial composition P = W1 ⊕W2 ⊕ . . .Wl with respect

to an attribute Xp is defined inductively as F (P )(Xp) = F (W1)(Xp)⊙ F (W2)(Xp) . . .⊙

F (Wl)(Xp). We also denote the preference valuation (over all attributes) of a partial

composition P as the tuple V al(P ) = (F (P )(Xi), F (P )(X2) . . . F (P )(Xk)).

Thus, the preference valuation of a partial composition with respect to a non-

functional attribute corresponds to the least preferred valuation of that attribute among

the participating component services in the composition. For example, in Figure 6.3 the

valuation of the partial composition b2⊕p1⊕s1 with respect to the attribute availability

(A) is low (LA) because the component s1 has low availability although the component

b2 has high availability.

Definition 31 (Most Preferred Completion). The most preferred completion of a pref-

erence valuation of a partial composition P is defined as a complete assignment to

all attributes X1, X2, . . .Xk, β(P ) = PrefComp(V al(F (P )),N ) where the function

PrefComp is as defined in Def.27.

Intuitively, it is easy to see why β(Pi) is a heuristic estimate of the most preferred

composition that can be realized by extending the given Pi. In our search for com-

positions, β(Pi) denotes the estimate of most preferred feasible candidate composite

service that is equivalent to the goal service that is realizable from the current partial

composition Pi.

Definition 32 (Heuristic Function h). We define the heuristic function h as h : 2P →

2P , where P is a set of partial compositions and S := h(ϕ), S ⊆ ϕ ⊆ P is such that

∀P0 ∈ S and ∀Pi ∈ ϕ, β(Pi) 6≻ β(P0). We also define h(φ) = ⊥ and ⊥⊕Wi ≡Wi.
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Algorithm 5 TCP-Compose⋆ (N , ϕ, G, R)

1. Compute heuristic ρ← h(ϕ)
2. for all P ∈ ρ do
3. if (P ≡ G and ∄ Q ∈ θ : β(Q) ≻ β(P)) then
4. θ ← θ ∪ {P}
5. ϕ← ϕ− {P}
6. for all Q ∈ θ do
7. if β(P) ≻ β(Q) then
8. θ ← θ − {Q}
9. end if

10. end for
11. else
12. Find the next set of feasible partial compositions expanding P

ψ ← {Pi | Pi = P ⊕Wi, Wi ∈ R and P ⊕Wi ≡ G}
13. ϕ← ϕ ∪ ψ − {P}
14. end if
15. end for
16. if (ϕ = φ) then
17. return θ
18. end if
19. TCP-Compose⋆ (N , ϕ, G, R)

The above definition of the heuristic function h makes it clear that, for any set of

partial compositions ϕ, h(ϕ) is the set of partial compositions whose valuations are

non-dominated by the valuation of any other partial composition in ϕ.

Algorithm 1 shows the listing for TCP-Compose⋆. The main idea behind TCP-Compose⋆

is to use a best first search strategy to find a set of non-dominated feasible candidate

compositions equivalent to the goal service. To guide the search, the algorithm applies

the heuristic function h to the set of partial compositions under consideration. The

algorithm is initially invoked with the parameters (N , φ, G,R). The set of partial com-

positions under consideration for expansion are maintained in ϕ, and the algorithm uses

h(ϕ) to select the set of non-dominated compositions ρ to expand (line 1). Next, for

each of the compositions in the non-dominated set ρ, if there is a candidate composition

P which is functionally equivalent to the goal service, then the algorithm adds P to the

solution set θ, provided none of the existing solutions already in θ strictly dominate it
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(lines 2 - 5). If P now strictly dominates any of the existing solutions in θ then those

candidate solutions are removed from θ (lines 6 - 10). For partial compositions that are

not candidate compositions in ρ, the algorithm proceeds to compute the set of feasible

extensions and adds them to ϕ (lines 11 and 14). The algorithm terminates with the

set of candidate solutions θ if there are no more compositions to explore (lines 16 - 18),

and finally, the process is repeated (line 19) until there are no more compositions left to

explore.

We now proceed to describe how the algorithm explores the search space when the

TCP-net does not induce a total order on the set of non-functional attribute valuations.

In the search space illustrated in Figure 6.3 in the first run, when expanding the root node

there are two possible partial compositions namely b1 and b2 respectively. Note that the

valuations of partial compositions b1, b2 are incomparable with respect to the TCP-net

N , and in the second run, both the partial compositions in ϕ are expanded. In runs 3, 4

and 5 the compositions b2 ⊕ p1, b2⊕ p2, b2⊕ p3 are expanded, as their valuations strictly

dominated others in their respective iterations. However, in the sixth run, the algorithm

again finds that the non-dominated compositions b1⊕p2 and b2⊕p1⊕s1 are incomparable,

and hence expands both. Notice that when expanding b2⊕p1⊕s1, the feasible extensions

also have the component s1 (we assumed that b2, s2 are functionally incompatible and

cannot be composed together) which has lower reliability and availability, but there is a

still a possibility of a service with b1 ending up with a candidate composition with high

availability. In the seventh run, the algorithm identifies b2⊕p1⊕s1⊕q1 as a solution, and

finally in the eighth run the algorithm terminates with both the candidate compositions

b1 ⊕ p3 ⊕ s2 ⊕ q3 and b2 ⊕ p1 ⊕ s1 ⊕ q1 as the non-dominated candidate compositions.

This illustrates how the less preferred compositions like b1⊕p1 are actually not explored

by the algorithm, consequently pruning of the search space.
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6.2.4.2 Properties of TCP-Compose⋆

We show that the algorithm TCP-Compose⋆ is guaranteed to return the set of com-

posite services each of which is functionally equivalent to the user-specified goal service

that constitute a non-dominated set with respect to a set of user preferences over the

non-functional attributes.

Lemma 1. For any partial composition P, β(P) � β⋆(P), where β⋆ gives the valuation

of the actual most preferred feasible composition starting with P.

Proof. Suppose by contradiction, there exists a partial composition P and a β⋆ such

that β⋆(P) ≻ β(P). This implies that there is a feasible candidate composition C

starting from the partial composition P such that V al(C) ≻ β(P), or there is a se-

quence of feasible extensions from P to C such that V al(C) ≻ PrefComp(V al(P),N )

with respect to N , by the definition of β(P). This clearly contradicts the definition of

PrefComp(V al(P),N ).

Theorem 11. TCP-Compose⋆ is guaranteed to return the set of feasible composite ser-

vices that constitute a non-dominated set with respect to a given TCP-net.

Sketch, by contradiction. Suppose TCP-Compose⋆ does not terminate with the set of non-

dominated candidate compositions. There are three cases to consider.

1. TCP-Compose⋆ terminates with a set of compositions such that one of the solutions

returned by TCP-Compose⋆ is a not feasible composition. This contradicts the Step

3 of the algorithm where the terminating condition is clearly only satisfied for

feasible compositions.

2. TCP-Compose⋆ fails to terminate. This is not possible because although the al-

gorithm is recursive, the search tree is finite, and in each iteration, previously

examined partial compositions are not revisited.
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3. Starting with a partial composition P, TCP-Compose⋆ terminates with a set of

candidate compositions such that one of the solutions corresponds to a feasible

candidate composition C ′ with a sub-optimal preference valuation V al(C ′), i.e.

β⋆(P ) ≻ V al(C ′), where β⋆ gives the actual most preferred feasible composition

starting with P.

By Lemma 1, at each step, β(P) � β⋆(P) ≻ V al(C ′) ⇒ β(P) ≻ V al(C ′). So

in the last step just before termination, by the definition of the heuristic func-

tion h and Line 1 of TCP-Compose⋆, the algorithm would have chosen to expand

the composition P rather than the partial composition that just preceded C ′.

Hence, the algorithm could not have terminated with any composition C ′ such

that β⋆(P ) ≻ V al(C ′), and hence it would return only non-dominated candidate

compositions.

This proves that TCP-Compose⋆ is guaranteed to return the set of feasible composite

services that constitute a non-dominated set with respect to a given TCP-net.

6.2.5 Summary and Discussion

Most of the work on service composition has focused on algorithms for assembling,

from a set of available component services, a composite service that achieves the user-

specified functionality. However, in many applications, preferences over non-functional

attributes e.g., availability, performance as well as tradeoffs among them can influence

the choice of the component services in assembling a composite service that achieves

the desired functionality. Hence, there is a growing interest in techniques that incor-

porate such non-functional considerations into service composition. For example, Zeng

et al. [Zeng et al., 2003, Zeng et al., 2004] have explored linear programming methods

for optimizing the choice of services based on non-functional attributes based on user-
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specified weights and utility functions. Yu et al. [Yu and Lin, 2005] have explored a

formulation of service composition as a combinatorial optimization (multi-choice multi-

dimensional 0-1 Knapsack problem) and as a graph search problem wherein the non-

functional constraints are encoded by the edges in the graph. Berbner et al. [Berbner

et al., 2006] have proposed a heuristic approach, using simulated annealing and integer

programming, for selecting services based on non-functional attributes. Each of these

approaches assume a quantitative measure of preference over alternative valuations of

non-functional attributes. This is tantamount to assuming the existence of a cardinal

utility function [Keeney and Raiffa, 1993]. Eliciting such a utility function, over multi-

ple not necessarily independent attributes, from users presents a significant challenge in

practice. Hence, methods that can utilize qualitative information regarding preferences

over non-functional attributes are of significant interest.

Against this background, we have presented TCP-Compose⋆, a procedure for generat-

ing, given (i) a set of functional specifications; (ii) a set of preferences with respect to

non-functional attributes and their relative importance; (iii) a repository of candidate

services with specified input-output behaviors and non-functional attributes; and (iv)

any sound algorithm for assembling, from a repository of component services: a set of

composite services that (a) achieve the desired functionality and (b) are non-dominated

with respect to the user-specified preferences over non-functional attributes by any other

composite service in the solution set of the algorithm used for functional specification

based service composition. TCP-Compose⋆ uses TCP-net, a graphical modeling paradigm

for representing and reasoning with qualitative preferences and importance of alternative

partial solutions to a service composition problem that corresponds to different choices

of each component service. An important feature of TCP-Compose⋆ is that it offers a

generic approach to augment any of a broad range of available algorithms for assembling

feasible composite services that achieve the user-specified functionality with the ability

to consider qualitative preferences and tradeoffs over non-functional attributes of the
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desired goal service.

Schropfer et al. [Schropfer et al., 2007] have recently proposed a TCP-net based

formulation of qualitative user preferences over non-functional attributes for ranking and

selecting individual services. In contrast, the focus of TCP-Compose⋆ is on the assembly

of a set of composite services that constitute a non-dominated set with respect to a set

of user-specified preferences and tradeoffs over non-functional attributes.

Shaparau et al. [Shaparau et al., 2006] have proposed an algorithm for contingent

planning with goal preferences which can also be used for service composition. The

planning algorithm requires the user to specify explicit preferences over goals. This

is tantamount to explicitly specifying an ordering over all feasible composite services.

Hence, this approach is likely to be impractical in settings where the number of compo-

nent services in the repository is large. In contrast, the approach used in TCP-Compose⋆

requires the user to specify only the preferences and trade-offs over the non-functional

attributes that in turn induce a preference over the feasible composite services.

Work in progress is aimed at the implementation and experimental evaluation of

TCP-Compose⋆ on a range of benchmark problems of varying complexity. Some inter-

esting directions for further research include: investigation of approaches for handling

of global non-functional constraints (e.g., no composite service which has security level

below a specified threshold is acceptable); customized versions of TCP-Compose⋆ that

take advantage of specific representations and algorithms used in the search for feasible

solutions.

6.3 Web Service Substitution

As we have seen in Section 6.2, in service-oriented applications users often prefer

some composite services over the others based on their preferences over non-functional

attributes such as performance, security and cost. In such applications involving com-
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posite Web services, one or more component services may become unavailable. This

presents us with the problem of identifying other components that can take their place,

while maintaining the overall functionality of the composite service. Given a choice of

candidate substitutions that offer the desired functionality, it is often necessary to select

the most preferred substitution based on non-functional attributes of the service, e.g.,

security, reliability, etc.

We propose an approach to this problem using preference networks for representing

and reasoning about preferences over non-functional properties. We present algorithms

for solving several variants of this problem: a) when the choice of the preferred substitu-

tion is independent of the other constituents of the composite service; b) when the choice

of the preferred substitution depends on the other constituents of the composite service;

and c) when multiple constituents of a composite service need to be replaced simultane-

ously. The proposed solutions to the service substitution problem based on preferences

over non-functional properties are independent of the specific formalism used to repre-

sent functional requirements of a composite service as well as the specific algorithm used

to assemble the composite service.

After a composite service assembled from a repository of component services has been

deployed, one or more constituents of the composite service may become unavailable.

Hence there arises a need to replace such components with other components from the

repository while maintaining the overall functionality of the composite service. Among

the candidate substitutions that offer the desired functionality, the user might prefer

some substitutions over others based on non-functional attributes of the service, e.g.,

security, reliability, etc.

Service substitution based on the functional properties of components has been ad-

dressed by many authors [Benatallah et al., 2006, Bordeaux et al., 2005, Liu et al.,

2005, Martens et al., 2006, Pathak et al., 2007]. This section is aimed at addressing the

service substitution problem taking into account the user preferences over non-functional
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properties. We associate with each non-functional property, a corresponding domain and

assume that the non-functional properties as well as their respective domains are speci-

fied by some agreed upon standards. Service substitution in such a setting requires the

user to be able to express preferences over non-functional properties of services. For

example, a user might prefer a more secure service to a less secure one; or one with a

lower cost over one with a higher cost. Furthermore, some attributes may be more im-

portant than others, in which case, it is useful to assign relative importance to different

non-functional attributes (e.g., security being more important than performance).

Such preferences may be qualitative or quantitative. Qualitative preferences are as-

serted based on relative goodness of two alternatives, whereas quantitative preferences

force the user to quantify by how much he/she prefers one alternative to another, for

example in the form of utility functions [Fishburn, 1970]. While quantitative preferences

over multiple attributes can be difficult to elicit from users, qualitative preferences are

often easier to elicit [French, 1986b, Schneider and Shanteau, 2003].

Service substitution considering user preferences over non-functional attributes is

complicated by the fact that the value of a particular attribute of the composite service

is a function of all its constituent services. For instance, the reliability of a composite

service is only as high as the reliability of its least reliable constituent. Further, there

can be interactions among the user preferences with respect to different non-functional

attributes. For example, due to prohibitive cost, the user may prefer higher security

when there is low reliability and lower security when reliability is high.

Against this background, this section addresses the problem of service substitution

based on user specified qualitative preferences over non-functional attributes. The con-

tributions of the section are as follows:

1. We introduce an approach to service substitution based on user preferences over

non-functional properties of services. Our approach utilizes preference networks
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[Brafman et al., 2006] for representing and reasoning about preferences over non-

functional properties in this setting.

2. We consider and solve two variants of the service substitution problem, namely,

context-insensitive and context-sensitive substitution. The former assumes that

the preferred substitution can be identified independent of the context, i.e., the

other constituents in the composition, whereas the latter takes into account the

context of the substitution.

3. We consider and solve the service substitution problem in a more general setting,

wherein multiple constituents of a composition need to be replaced.

The proposed solutions to the service substitution problem based on preferences over

non-functional properties are independent of the specific formalism used to represent

functional requirements of a composite service as well as the specific algorithm used to

assemble the composition.

Organization. Section 6.3.1 describes our solutions for identifying the preferred

substitutions for both context-insensitive and context-sensitive substitution problems

using the TCP-net preference model. Section 6.3.3 describes our algorithm for substi-

tution of multiple services in a composition. Section 6.3.5 concludes with a summary,

discussion of related work and an outline of future directions for research.

Example 9. Suppose that a user specifies preferences over three non-functional at-

tributes: reliability (R), security (S) and availability (A). The domains of the attributes

are {LR, HR}, {LS,MS, HS} and {LA, HA} respectively, where Li represents low “level”

of the attribute i, Mi represents medium and Hi represents high. The user specifies that

reliability is more important than availability, and availability is more important than

security. I.e., the user prefers high valuations of reliability and availability. Finally, the

user states that his/her preference with respect to the security is not independent of the
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Figure 6.4 TCP-net: Representing Preferences and Importance

reliability. At lower levels of reliability, the user prefers higher security, but the user

tends to prefer lower security when the reliability is high (say, due to prohibitive costs of

having higher levels for both attributes). The TCP-net in Figure. 6.4 represents the above

user preferences. It shows that S is preferentially dependent on R (i.e. Pa(S) = {R}).

Double-headed arrow captures the fact that R is relatively more important than A which,

in turn, is relatively more important than S. Finally, the conditional preference tables

annotate each node presenting the total order of the domain of each attribute (w.r.t. the

parents of the node, if any).

Remark 1. We limit our scope of discussion to a class of TCP-nets called condition-

ally acyclic TCP-nets, as only this particular class of TCP-nets have been proved to be

satisfiable with a preference relation [Brafman et al., 2006]. We also assume that the

preferences over variable domains are total orders, although TCP-nets in general allow

specification of partial orders as well. We note that there is another variant of the TCP-

net, known as UCP-nets [Brafman et al., 2006] that captures quantitative preferences

and relative importance information using utility functions. However, since we are not

dealing with quantitative preferences, we stick to the basic qualitative TCP-nets.

Non-dominated Set of Outcomes. Given a conditionally acyclic TCP-net, there

exists a total order (that can be obtained using a topological sort) of the set of outcomes

O that is consistent with the given TCP-net [Brafman et al., 2006]. However, several

orderings of O can be consistent with a given conditionally acyclic TCP-net (corre-
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sponding to distinct topological sorting of the variables in the preference network). In

a total preorder, there could be an outcome o such that ∄o′ : o′ ≻ o with respect to the

TCP-net, but one cannot define o as the unique most preferred outcome.

Consider the example in Figure 6.4. If the user did not provide the information

that R is relatively more important than A, then we will not be able to assert the

preference between two valuations of attributes: (HR, HS, LA) and (LR, HS, HA). In

other words, the user is indifferent with respect to the above outcomes and we say that

the outcomes form a non-dominated set, one where any element in the set is not preferred

over any other element in the set. To handle such situations, it is necessary that the

reasoning about preferences considers non-dominated outcomes instead of the unique

most preferred one.

6.3.1 Preference Reasoning for Web Service Substitution

We now proceed to describe the problem of Web service substitution, and how to

use TCP-nets to compute the preferred substitutions from a set of functionally feasible

alternatives. For this purpose, we will use dominance queries [Brafman et al., 2006] of

the form o
?
≻ o′ with respect to TCP-net (in other words whether o is preferred to or

dominates o′).

Definition 33 (Web Service Composition [Santhanam et al., 2008]). A Web service

composition C = W1 ⊕W2 . . . ⊕Wk such that ∀1 ≤ l ≤ k,Wl ∈ R is an assembly of

component services from a repository of available services R = {W1,W2 . . .Wn} such

that C is functionally equivalent 2 to a target or goal service G, denoted by C ≡ G. In

the above, ⊕ is the composition operator for composing two services.

The problem of Web service substitution refers to identifying a component service

from the repository of services that can suitably replace a particular component in an

2Functional equivalence can be defined in many ways including bisimulation of labeled transition
systems [Pathak et al., 2006b, Pathak et al., 2007]
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existing composite service. The identified component service must achieve the desired

functionality in the context of the composite service as a whole. Formally, Web service

substitution is defined as follows.

Definition 34 (Web Service Substitution). Given an existing composite service C =

W1 ⊕W2 . . . ⊕Wi−1 ⊕Wi ⊕Wi+1 . . . ⊕Wk that achieves the functionality of the target

or goal service G such that C ≡ G, Web service substitution amounts to identifying

a replacement, Ws, of a component Wi in the composite service, such that C ′ = W1 ⊕

W2 . . .⊕Wi−1 ⊕Ws ⊕Wi+1 . . .⊕Wk and C ′ ≡ C.

We will also use the notation C ⊖W to denote the partial composition obtained by

removing the service W from the composite service C i.e., C ⊖Wi = W1 ⊕ W2 . . . ⊕

Wi−1 ⊕Wi+1 . . .⊕Wk. The above definition, however, does not take into consideration

the preferences over non-functional attributes of the composition and the components.

Given the user-preferences and trade-offs over non-functional attributes in the form

of a TCP-net, we can define the preference valuation [Santhanam et al., 2008] of a service

as follows.

Definition 35 (Preference Valuation). Preference valuation is a function F :W×X →
⋃

(D(Xi)) W = {W1,W2 . . .Wk}, X =
⋃
{Xi}. We denote the valuation of an attribute

Xi in a Web service W as F (W )(Xi) = vi where vi ∈ D(Xi). We define the valuation

of an attribute Xi in a composition of two services Wi ⊕ Wj as F (Wi ⊕ Wj)(Xi) =

F (Wi)(Xi)⊙ F (Wj)(Xi), where

F (Wi)(Xp)⊙ F (Wj)(Xp) =




F (Wj)(Xp) if F (Wi)(Xp) ≻ F (Wj)(Xp)

F (Wi)(Xp) otherwise

The preference valuation of a composition P = W1 ⊕W2 ⊕ . . .Wl with respect

to attribute Xp is defined (inductively) as F (P )(Xp) = F (W1)(Xp) ⊙ F (W2)(Xp) . . . ⊙
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F (Wl)(Xp). We also denote the complete preference valuation over all attributes

X of a composition P as the tuple VP = 〈F (P )(Xi), F (P )(X2) . . . F (P )(Xk)〉.

The function F defines how the valuations of P ’s components are aggregated. Our

definition of F computes the the least preferred valuation of that attribute among the

participating component services in the composition. For example, in the case of relia-

bility, the valuation of a composition can be defined as the valuation of its least reliable

component. We note that other attributes such as cost may require other ways of ag-

gregating the attribute valuations of the components in a composition, which can be

handled by having appropriate definitions of F and ⊙.

Definition 36 (Sole Dependence). Given a composition C and its component W , we say

that C is solely dependent on W with respect to an attribute Xi iff VC⊖W (Xi) ≻ VC(Xi).

In other words, improving the valuation VW (Xi) improves C’s valuation of Xi as

well, i.e., all other components in C have a strictly better valuation for Xi than W .

6.3.2 Computing Preferred Substitutions

Now we address the problem of finding the preferred substitutions from a set of func-

tionally feasible substitutions using a TCP-net model of preferences over non-functional

attributes. Given a composite service C and a component W to be replaced, we assume

that there exists a mechanism3 that generates the set of functionally feasible substi-

tutions, W, from the repository of available services. Our goal is to compute the set

W′ ⊆ W of preferentially non-dominated substitutions with respect to the given TCP-

net.

We further distinguish between two variants of the substitution problem, namely,

context-insensitive and context-sensitive substitution. The first approach assumes that

3We refer the reader to [Pathak et al., 2007, Liu et al., 2005, Martens et al., 2006, Benatallah et al.,
2006, Bordeaux et al., 2005] for more details on functional aspects of service substitution
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Services Reliability Security Availability

Composite C LR LS HA

To-replace W LR LS HA

Substitutes

W1 LR LS LA

W2 HR HS LA

W3 LR MS HA

W4 LR HS HA

Table 6.2 Preference Valuations

the preferred substitution can be obtained independent of the context, i.e., the non-

functional properties of the other components in the composition, while in the second

approach, the context of the substitution is taken into account.

Example 10. Consider a composite service C that and a component W in C that needs

to be substituted. Suppose that there is a set of functionally feasible substitutions W =

{W1,W2,W3,W4} such that each component Wi ∈ W can substitute W in C satisfying all

the functional requirements of the substitution. The non-functional attributes of interest

to the user are reliability, availability and security, and the user-preferences over these

attributes are represented using the TCP-Net in Figure 6.4. The valuations of the non-

functional attributes for C, W and the substitutes are presented in Table 6.2. The

objective is to identify the preferred substitution(s) for W in the composition C.

6.3.2.1 Context-Insensitive Substitution

This approach simply computes the preferentially non-dominated substitutions for

the component to be replaced, from the set of functionally feasible substitutions, without

considering how the non-functional properties of the other components in the composi-

tion may affect the valuation of the overall composition.

In Example 10, W2 is the most preferred substitution in W as VW2
≻ VW4

≻ VW3
≻

VW1
(see Figure 6.4 and Table 6.2). If C is solely dependent on W with respect to

reliability and security, then the choice of W2 is the most preferred one. As the existing
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composite service C has the valuation VC = (LR, LS, HA), following Definition 35, the

new composition with W2 as the substitute will have a valuation VC
′ = (HR, HS, LA) ≻

VC .

However, consider the scenario when with respect to the attributes reliability and

security, C is not solely dependent on W, e.g., there is some other service in C in

addition to W that has low reliability and low security. In that case, W2 as the preferred

substitution would be a bad choice, as the overall valuation of C goes down: VC
′ =

(LR, LS, LA), i.e., VC ≻ VC
′. This is because the computed substitutions do not take into

account the context of the composite service as a whole. A better substitution in terms

of preference can be obtained, if we take into account some context information, i.e.,

the preference valuation of the composite service C in the absence of W , VC⊖W . Thus,

the context-insensitive approach works well only when all the non-functional attribute

valuations of the composition are solely dependent on the component being replaced.

6.3.2.2 Context-Sensitive Substitution

In this approach, when identifying a replacement, we take into account how the

valuation of the identified substitution will affect the overall valuation of the composition.

As a result, here we consider the valuation of the composition in the absence of the

component to be replaced in order to identify substitutions, i.e., VC⊖W , in contrast to the

context-insensitive approach where we instead considered VC . The following algorithm

describes this approach.

1. Compute VWj

′ = V(C⊖W)⊕Wj
, ∀Wj ∈ W

2. Compute the preferentially non-dominated set of valuations ϕ = {VWj

′ | ∄Wk
′ :

VWk

′ ≻ VWj

′} w.r.t. TCP-net

3. Return the set of substitutions corresponding to each valuation in ϕ i.e., W′ =

{Wj | VWj
∈ ϕ}
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To see the subtle distinction between the context-insensitive and sensitive approaches,

suppose that in Example 10, C is solely dependent onW with respect to security; and not

with respect to reliability and availability. Let the valuation of VC⊖W yield (LR, HS, HA)

– assuming all other components in C have high security level. The above algorithm

would return the solution as W4 because V(C⊖W)⊕W4
= (LR, HS, HA) clearly dominates

V(C⊖W)⊕W3
= (LR,MS, HA), as well as V(C⊖W)⊕W1

= (LR, LS, LA) and V(C⊖W)⊕W2
=

(LR, HS, LA). Thus, this approach yields the best solution W′ = {W4} taking into

account the context information.

6.3.3 Multiple Component Substitution

The solutions we have seen so far are aimed at finding preferred substitutions for one

component at a time. We now address the problem of finding substitutes for more than

one component at a time.

Consider a composite service C that needs to replace a set of n of its compo-

nents: W = {W1,W2, . . .Wn}. We again assume that the user-preferences over the

non-functional attributes are modeled using a TCP-net, and that there exists a mecha-

nism to find out the set of functionally feasible substitutions for any given component

in the composite. Suppose that each Wi has a set of functionally feasible substitutions:

RWi
= {Wi1,Wi2 , . . .Wik}. The problem is to find one substitutionWij fromRWi

for each

component Wi to be replaced. There are many feasible sets of substitutions functionally

possible, given by the space P = RW1
× RW2

· · · × RWn
. We denote the composition

obtained by making the set of substitutions S = {W s
1 ,W

s
2 , . . .W

s
n} (where W s

i denotes

a substitute service in the set RWi
) as (C ⊖ R) ⊕ S. We are interested in finding a set

of substitutions S ∈ P that maximizes the preference of the resulting composite service,

i.e., ∄S ′ ∈ P : V(C⊖R)⊕S′ ≻ V(C⊖R)⊕S .

One way to search for an optimal solution is by brute force: exploring the entire

space of sets of substitutions P, and finding the set of non-dominating set of substitu-
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VW11
= 〈x1, y3〉 VW21

= 〈x0, y2〉 VW31
= 〈x3, y1〉

VW12
= 〈x2, y2〉 VW22

= 〈x2, y1〉 VW32
= 〈x2, y1〉

VW13
= 〈x1, y1〉 VW23

= 〈x0, y1〉 VW33
= 〈x1, y1〉

Table 6.3 Valuations of replacements

tions from that set. However, given that the number of components to be replaced is n

and considering that each component has k functionally feasible substitutes, it is com-

putationally expensive (number of possible sets of substitutions is exponential: O(kn))

to explore the entire space.

A more efficient but naive approach for finding multiple component substitutions

according to the user preferences would be to execute the one-component substitution

algorithm multiple times, once for each component to be substituted. However, there

is no guarantee that this approach would give the best possible set of substitutions, as

illustrated by the following example.

Example 11. Consider a composition C that requires three services to be replaced, W =

{W1,W2,W3}. Let there be functionally feasible substitutions, RW1
= {W11,W12,W13},

RW2
= {W21,W22,W23}, RW3

= {W31,W32,W33} respectively. Table 6.3 shows their

valuations over two non-functional attributes X and Y with domains {x0, x1, x2, x3} and

{y0, y1, y2, y3} respectively. The preferences over the variables are given in Figure 6.5.

Let VC⊖W = 〈x2, y3〉; then the naive substitution approach will execute the single-

component substitution for W1, W2 andW3 independently, yielding replacementsW11,W21

and W31 respectively according to the algorithm presented in Section 6.3.2.2. The result-

ing preference value VC⊖W⊕{W11,W21,W31} = 〈x0, y1〉. However, note that there exists an-

other solution, namely replacements W12,W22 and W31 for W1, W2 and W3 respectively,

which yields a better solution with valuation VC⊖W⊕{W12,W22,W31} = 〈x2, y1〉.

The reason for the sub-optimal solution obtained by the naive approach in the above

example is that it does not consider the effect of the choice of replacement for one

component on the choice of replacement for others.
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Figure 6.5 Preferences: Multiple Component Substitution

The solution obtained by the naive approach can be improved by having a search

procedure that chooses the optimal replacement for a component Wi, contingent on

the previous replacement choices already made. However, note that even in such an

approach, the order in which we choose replacements for components plays an important

role in determining the solutions. For example, if we choose the replacement for W1 first,

followed by a replacement for W2 (given the choice for W1), followed by a choice for W3

(given the choices for W1 and W2), we obtain the sub-optimal solution W11, W21 and

W31 with valuation 〈x0, y1〉. Instead, if we choose the replacement for W3 first, followed

by W2 and W1, then the resulting solution is optimal: the choice for W3 is W31; the

choice for W2 (given the choice for W3) is W22, and the choice for W1 (given the choices

for W3 and W2) is W12. The resulting valuation of the substituted composite service is

〈x2, y1〉 and it is optimal. Thus, the order in which the replacements for the components

are chosen impacts the optimality.

In the absence of any information regarding the order in which components have to

be replaced, the only way to guarantee an optimal solution is to explore all possible or-

ders. In effect, this problem generalizes the known NP-hard traveling salesman problem

[Cormen et al., 2001] that involves finding the optimal ordering of points in a plane such

that the overall real-valued cost is minimized. The difference in our case is that we deal

with qualitative valuations instead of real-valued costs.

We propose an approach to finding the optimal solution by exploiting that fact

that the optimal solution corresponds to some preferred order in which the services

are considered to be replaced. In the above example, such orders are (W3,W2,W1) and

(W3,W1,W2). We present an algorithm that organizes the possible orderings in the form
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Figure 6.6 Multiple Component Substitution

of a lattice and obtains the preferred order as the shortest path between two nodes in

the lattice.

6.3.4 Finding Preferred Order

We construct a lattice with the bottom of the lattice as the partial composition

C⊖W , and the top of the lattice as the fully substituted or repaired composition, namely

C ⊖W ⊕ S. Each node in level l (i.e., nodes that are l steps away from the bottom)

of the lattice is the partial composition C ⊖W composed with l different substitutes.

There are a total of n+ 1 levels in the lattice and at each level l of the lattice, there are
(

n

l

)
. In particular, the level 0 of the lattice is the bottom and level n+1 is the top. The

lattice for Example 11 is illustrated in Figure 6.6, where s0 corresponds to C ⊖W and

s7 corresponds to C ⊖W ⊕ S, where S is the optimal substitution. We note that each

path in the lattice specifies one order of selecting substitutes in W , and we denote the

valuation of the fully substituted composition obtained through a path p in the lattice

as Vp.

We assign the cost of each node in the lattice as follows. The cost of the bottom of

the lattice (s0 in Figure 6.6) is VC⊖W . The cost of a path of length l from s0 to any
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other node is the given by V
C⊖W⊕{Ŵ1,...,Ŵl}

, where Ŵi is locally-preferred substitute for

Wi ∈ {W1,W2, . . . ,Wn} −
⋃

j<i

{Wj | Ŵj substitutes Wj}

For example, in Figure 6.6, there are two paths from s0 to s4. The cost of substitution

along the path s0, s1, s4 is VC⊖W⊕{W11,W31} = 〈x1, y1〉; in this path substitution of W1 is

selected before the substitution for W3. While the cost of substitution along the path

s0, s5, s4 is computed from the selection of substitution for W3 followed by that for W1.

Cost of any node other than the bottom is the most preferred cost among the paths

from the bottom of the lattice to itself. For example, cost of node s4 is 〈x2, y1〉 due to

the cost of the path s0, s5, s4. Finally, the most preferred substitution is given by the

path from the bottom to the top of the lattice which corresponds to the cost of the top.

Note that, this path corresponds to the preferred-order.

Algorithm 6, inspired by Dijkstra’s shortest path algorithm [Cormen et al., 2001],

computes the cost of the top of the lattice. Whereas Dijkstra’s shortest path algorithm

works for quantitative costs, or cases when the valuations of the paths are totally ordered,

Algorithm 6 works for partial orders as well. This is needed because a node can be

associated with multiple costs as the cost of the paths from the bottom to that node

may be incomparable. Furthermore, unlike Dijkstra’s algorithm which works on real

value comparison operator, >, Algorithm 6 uses dominance relation ≻ between non-

functional attribute valuations.

Lines 1–4 initializes the cost of a node Vn and its parent ρ(n) to ▽ and undef

respectively. The symbol ▽ denotes the worst valuations of the non-functional attributes

in our setting (e.g., 〈LR, LS, LA〉). At Line 5, the bottom of the lattice is assigned the

cost of VC⊖W , i.e., the value of the non-functional attributes of the composition C

without the services in W . Line 7 obtains the set of nodes whose associated cost is

not dominated by that of any other node. Initially, this set will be singleton containing

only the bottom element (unless VC⊖W = ▽, in which case any substitution for the
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Algorithm 6 PreferredSubstitutions(≻d , G(N,E))

1: for all n ∈ N do
2: Vn ← ▽

3: ρ(n)← undef

4: end for
5: V⊥∈N ← VC⊖W

6: while |N | > 0 do
7: N1 ← {n ∈ N : ∄m ∈ N : Vm ≻ Vn}
8: N ← N \N1

9: for all n ∈ N1 do
10: for all m ∈ N such that (n,m) ∈ E do
11: if Vn⊕m≻d Vm then
12: Vm ← Vn⊕m

13: ρ(m)← n
14: else if Vm ∼ Vn⊕m then
15: Create a node m′ with same edges as m
16: V ′

m ← Vn⊕m

17: N ← N ∪ {m′}
18: end if
19: end for
20: end for
21: end while

services in W is a preferred one). Line 10–13 identifies the one-step neighbors of the

current node and updates their cost appropriately if the costs are comparable (Line 11).

If there are two paths to m with incomparable costs (specifically with non-dominating

costs – Line 14), then the node is split into two (Lines 15–17). In general, if there are

p paths leading to a node in the lattice, and p′ paths form the non-dominating set with

respect to their valuations, then the node is split into p′ nodes (replicating all the edges

of the original node in the split nodes), one for each of the paths with non-dominated

valuations. However, such splitting, which will increase the computational complexity,

can be effectively avoided by soliciting information from the user to break the tie due to

non-dominance whenever the condition at Line 14 is satisfied. In that case, our algorithm

will be able to assign a unique cost to each node, thereby avoiding node splitting.

The algorithm terminates when the minimum cost of all nodes are assigned; At this
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point, the valuations at the top element in the lattice correspond to the most preferred

non-dominated substitutions.

6.3.4.1 Complexity

Let there be n components to be replaced, and k feasible substitutes for each of

them. By our construction, for each edge of the lattice, we make one substitution, i.e.,

we choose the best substitute from k candidates. Assuming that we obtain unique cost

for each node (i.e., costs of all paths leading to a node are comparable), the number of

times we make such a selection is equal to the total number of edges in the lattice, which

is n.2n−1. Hence, we consider k.n.2n−1 sets of substitutions in all. It can be shown that

∀k > 2, ∀n > 4 : kn > k.n.2n−1, i.e., our approach will be more efficient than brute force

whenever k > 2 and n > 4.

Remark 2. If the cost of a node is not unique, as would be the case if there are at least

two paths to that node with non dominating costs, then an alternative to splitting the node

is to solicit information from the user to break the tie between these costs. This leads to

unique cost at each node. In the event, the user fails to provide such information, the

algorithm can proceed by splitting the nodes. However, such splitting will lead to increase

in computational cost of our method. Let m nodes be split at each level of our lattice

representation. Then the complexity for computing the globally-preferred substitutions

is4

C(n,m) = k.n.2n−1 + k.m

n−1∑

i=2

(i!− 1)(n− i) (6.1)

Using this, we can design a method that switches from our algorithm to brute-force

method when m splits are made and any further splitting will make kn less than C(n,m).

4The derivation of Equation 6.1 is not presented due to space constraint.
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6.3.5 Summary and Discussion

Web service substitution approaches [Pathak et al., 2007, Liu et al., 2005, Martens

et al., 2006, Benatallah et al., 2006, Bordeaux et al., 2005] have been developed in the

past that identify functionally feasible replacements from a given repository. Regarding

non-functional properties, existing techniques have focused on analyzing non-functional

properties as hard-constraints (e.g., reliability after substitution must be 70%) or mod-

eled them as a minimization/maximization problem (e.g., reliability after substitution

must be maximized) [Ardagna and Pernici, 2007, Claro et al., , Sohrabi et al., 2006].

These techniques are either based on constraint satisfiability or require the user to pre-

cisely quantify their preferences over non-functional attributes (or both), or they do not

address the problem of substitution in detail. To the best of our knowledge, there has

been little work on identifying preferred substitutions in accordance with user-specified

qualitative intra-variable and relative importance preferences over non-functional at-

tributes.

We have introduced two different variants of the substitution problem given pref-

erences over non-functional attributes: context-insensitive and context-sensitive. Our

treatment of these two variants parallels the work of Pathak et al. [Pathak et al., 2007]

on service substitution based on functional attributes. However, it departs from the

work of Pathak et al. in an important respect: it offers a solution to the service substi-

tution problem taking into consideration the preferences over non-functional attributes.

We have also addressed the problem of substitution of multiple services in a compo-

sition. We showed that, in the context-sensitive setting, the order in which services

are substituted influences the quality of the solution obtained (relative to user-specified

preferences over non-functional attributes). We refer to the substitution order(s) corre-

sponding to the most preferred solution as the preferred order(s). In the absence of any

additional information regarding the preferred order, solving the multiple service sub-
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stitution problem in the context-sensitive setting appears to be NP-hard. We show how

to represent all possible substitution orders compactly by arranging the services to be

replaced within a lattice structure. Finally, we reduce the problem of obtaining the pre-

ferred order(s) to identifying the shortest path(s) between the bottom and top elements

of the lattice. We identify the conditions under which our method is computationally

more efficient than a brute force search. Our approach to service substitution based

on preferences over non-functional properties is independent of the specific formalism

used to represent functional requirements of a composite service as well as the specific

algorithm used to assemble the composite service.

Work in progress includes experimental studies of the performance and scalability

of our algorithms. We next plan to implement our approach in an existing system

like MoSCoE that does functional substitution. In future, we would like to extend

our framework for service substitution to preference models that allow specification of

partial orders over variable domains. We also plan to extend our framework to allow hard

constraints over non-functional attribute values in addition to qualitative preferences,

so that constrained preferential optimization supported by TCP-nets [Brafman et al.,

2006] can be leveraged to obtain preferred substitutions.

6.4 Web Service Adaptation

Overview. After a composite service that satisfies the functional requirements is

deployed, the requirements of the user may change. Apart from changes in the func-

tional requirements, service-oriented architectures often have to deal with changes in

the user preferences over the non-functional attributes and/or repository of available

components. We formulate the problem of adaptation in the face of such changes as

iterative substitution of appropriate components in a composite service. We provide

two anytime algorithms that produce a sequence of increasingly preferred adaptations
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with time: a fast algorithm that searches for preferred adaptations by improving the

valuation of the relatively more important attributes, and another that is computation-

ally more intensive but guaranteed to produce at least one preferred adaptation, if one

exists.

We consider the problem of service adaptation when there is a change in one or more

of the following of a composite service: (a) user preferences over the non-functional

attributes (e.g., due to a recent budget cut, cost is now relatively more important than

the performance of the composition); (b) repository of available components (e.g., new

components have been added to the repository that could potentially improve the non-

functional attributes of an existing composition with respect to user preferences). While

techniques for service adaptation with respect to changes in functional requirements

[Chafle et al., 2006] have been proposed, the problem of adaptation with respect to

changes in the preferences over non-functional attributes and/or to the repository has

received little attention.

Non-functional requirements over attributes such as performance and cost are usually

expressed in the form of user preferences over values for each attribute. Such preferences

could be quantitative or qualitative. In general, quantitative preferences are hard to elicit

from users whereas qualitative preferences are easier to elicit [Doyle and Thomason, 1999]

because users often lack enough information to quantify their preferences. We consider

the problem of identifying preferred adaptations when the users specify two types of

qualitative preferences: (a) preferences over the various values of each non-functional

attribute (e.g., the higher the performance, the better); (b) relative importance over

different non-functional attributes (e.g., cost is more important than performance).

Example 12. Let C = W1 ⊕W2 be a composite service that satisfies a functionality ϕ,

with W1 and W2 being two atomic services such that W1 has low performance (pL) and

high availability (aH), and W2 has high performance (pH) and low availability (aL). The
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user prefers services with high performance and availability in general (pH ≻ pL; aH ≻

aL). The attributes of C are then 〈pL, aL〉 considering the fact that a composite service

is only as performant (or available) as its least performant (or available) component.

Suppose that the user changes his preference so that additionally availability is rel-

atively more important than performance (A �
′ P ). Further, assume that the repos-

itory is updated with new atomic services W ′
1 with attributes 〈pM , aH〉 and W ′

2 with

attributes 〈pH , aM〉 (subscript M stands for ‘medium’) such that two new compositions

C1 = W ′
1 ⊕W2 and C2 = W1 ⊕ W ′

2 satisfy ϕ. Then the attributes of C1 and C2 are

〈pM , aL〉 and 〈pL, aM〉 respectively. Here, C1 and C2 are both preferred adaptations of C

with respect to the updated repository and preferences because C1 has better performance,

and C2 has better availability respectively compared to C. Furthermore, C2 is the most

preferred adaptation because the relatively more important attribute, namely availability,

has a better valuation in C2 compared to C1.

We use the TCP-net [Brafman et al., 2006] preference formalism for eliciting user

preferences over the non-functional attributes in the form of qualitative, totally ordered

intra-attribute preferences (over the valuations of each attribute), and partially ordered

relative importance (over the attributes). We however note that our solution approaches

can be applied equally well with any other suitable formalism for representing and rea-

soning with such preferences. Our approach is based on the fact that any adaptation

of a composition can be obtained by replacing one or more components in the existing

composition. Our main contributions are:

1. We reduce the problem of identifying increasingly preferred adaptations to the

problem of iteratively substituting one or more components in the given compo-

sition with respect to the user preferences. We identify components that have to

be necessarily replaced in a composition in order to improve the valuation of the

composition with respect to an attribute.
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2. We develop two sound adaptation algorithms with the anytime property: they

produce a sequence of increasingly preferred (with respect to the new preferences

and repository) compositions with time, each composition in the sequence being

an adaptation of its predecessors. Both algorithms search the space of possible

adaptations by substituting some of the components in the given composition.

While the first algorithm iteratively attempts to improve the valuation of the

composition with respect to the relative importance order of attributes and is

computationally faster, the second algorithm is more computationally intensive

but is guaranteed to produce at least one preferred adaptation, if one exists.

3. We provide a comparative analysis of our algorithm that is guaranteed to produce

a preferred adaptation if one exists against the blind search algorithm in terms of

the number of subsets of components that they consider to substitute.

6.4.1 Service Adaptation via Service Substitution

We focus on the problem of service adaptation in the face of changes in (a) the user

preferences ({≻i} and �), and/or (b) in the repository (R) of available components.

Note that the deletion of components in the repository can be handled using service

substitution algorithms [Santhanam et al., 2009b]. Hence, we consider we consider only

changes to the repository in the form of addition of new components. We refer to

the updated preferences and repository by {≻′
i}, �

′, ≻′ and R′ respectively. In the

event of such changes, it is possible that an already deployed composition C satisfying

a functionality ϕ is not the most preferred composition satisfying ϕ. In such a case, it

is often desirable to explore possible changes to C that could result in a composition C ′

such that C ′ |= ϕ, and C ′ is preferred to C as per the new preferences (VC′ ≻′ VC).

Consider a setting where a user attributes higher importance to the availability of

a composite service and deploys a composition with high availability at a higher cost.
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Due to the changes in the financial policy or recently imposed budget constraints in an

organization, the user may change his preferences over the non-functional attributes of

a composite service such that cost of the composition is relatively more important than

its availability. In this case, the user may want to adapt the existing composition so

that the adaptation has lesser cost but is also less available.

In another setting, for the same composition C, let the user’s preference remain the

same, and suppose that new components were added to the repository (i.e., R ⊆ R′)

such that a new component Wk ∈ R′ \ R can replace an existing component W in C,

resulting in a composition C ′ = (C ⊖W )⊕Wk |= ϕ with VC′ ≻ VC . Here, it is desirable

to adapt the existing composition C to C ′ in return for a better preference valuation.

Indeed, there may well be settings in which both the user preferences over the non-

functional attributes, as well as the repository change at the same time. In all the above

scenarios, it is desirable to adapt the existing composite service C with respect to such

changes, so as to obtain a more preferred composition that may not have been possible in

the absence of such changes. We now formally define the problem of service adaptation.

Definition 37 (Service Adaptation). Given an existing composite service C = W1 ⊕

W2 . . . ⊕Wn that achieves the desired functionality ϕ (C |= ϕ), an updated set of pref-

erences ≻′ (specified by {≻′
i} and �

′ of the new TCP-net), and an updated repository

R′, service adaptation amounts to identifying one or more compositions {C ′ | C ′ |= ϕ}

such that VC′ ≻′ VC. Each C ′ is said to be a preferred adaptation of C.

Example 13. Consider the problem of identifying the preferred adaptation of C = W1⊕

W2, with non-functional attributes P (performance) and A (availability) with domains

DP = {pL, pM , pH} and DA = {aL, aM , aH} (subscripts L,M,H stand for low, medium,

high respectively). Suppose that the updated repository is R′ = {W1,W
′
1,W

′′
1 ,W2,W

′
2,W

′′
2 }

with the valuations of the components services as given in Table 6.4, and updated prefer-

ences are pH ≻
′
P pM ≻

′
P pL, aH ≻

′
P aM ≻

′
C aL and A�

′ P (availability more important
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than performance). The feasible compositions {C1 . . . C9} and their respective valuations

are shown in Table 6.5. In this case, the ordering among the valuations of the adapta-

tions is: VC5
≻ {VC8

, VC9
} ≻ {VC4

, VC6
, VC7
} ≻ {VC2

, VC3
} ≻ VC1

. Hence, C2 . . . C9 are

all preferred adaptations to C, C5 being the most preferred adaptation with low perfor-

mance and high availability, in accordance with the user’s updated relative importance

preference (A�
′ P ).

Service Valuation

W1 〈pM , aL〉
W ′

1 〈pL, aH〉
W ′′

1 〈pH , aM〉
W2 〈pL, aM〉
W ′

2 〈pH , aH〉
W ′′

2 〈pM , aM〉

Table 6.4 Components

Composition Valuation

C1 = W1 ⊕W2 〈pL, aL〉
C2 = W1 ⊕W ′

2 〈pM , aL〉
C3 = W1 ⊕W ′′

2 〈pM , aL〉
C4 = W ′

1 ⊕W2 〈pL, aM〉
C5 = W ′

1 ⊕W
′
2 〈pL, aH〉

C6 = W ′
1 ⊕W

′′
2 〈pL, aM〉

C7 = W ′′
1 ⊕W2 〈pL, aM〉

C8 = W ′′
1 ⊕W

′
2 〈pH , aM〉

C9 = W ′′
1 ⊕W

′′
2 〈pM , aM〉

Table 6.5 Compositions

6.4.2 Computing Preferred Adaptations

In general, given any composition C satisfying ϕ and the associated new preferences

≻′ and repository R′, we could aim to achieve one of two goals, namely (a) finding the

set of most preferred adaptation(s) of C among all possible adaptations with respect
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to ≻′ and R′; or (b) finding a set of adaptations that are more preferred than C with

respect to ≻′ and R′.

Recall from Definition 37 that a composition C ′ is an adaptation of C if and only

if C ′ |= ϕ. Because C ′ differs from C precisely in terms of the set S = WC \ C
′ of

components, C ′ can be obtained by substituting the set S of components in C by any

sound and complete functional substitution algorithm. Therefore, in order to obtain the

most preferred adaptations, we need to address the following question: What is the set of

components in C that need to be substituted to obtain the most preferred adaptations?

In the absence of any additional information regarding which subsets of WC have to

be substituted in C, the most straightforward method for obtaining the most preferred

adaptation(s) is to compute compositions resulting from substitution of all possible sub-

sets of WC in C, and then selecting those with the most preferred valuations. However,

in the worst case, such a procedure for finding the most preferred adaptation(s) to C

requires us to solve 2|WC | instances of the substitution problem, which is computation-

ally expensive. Although discouraging, this does not rule out the possibility of finding

adaptations to C that are more preferred (not necessarily most preferred) compared to

C with reasonable efficiency.

One way to make the search for adaptations more efficient is to explore only some of

the subsets of WC that (when substituted in C) are likely to yield preferred adaptations.

We note that we can obtain a preferred adaptation C ′ of C by substituting a set S of

components in C such that at least one of the attribute valuations of C ′ is preferred

to that of C (by the TCP-net preference semantics [Brafman et al., 2006]). In order to

identify such a set S to be substituted in C, we use the notion of sole dependence.

Definition 38 (Sole Dependence and Sole Cause[Santhanam et al., 2009b]). A com-

position C is said to be solely dependent with respect to an attribute Xi on the set

δ(C,Xi) = {Wj
′ | VWj

′(Xi) = VC(Xi)∧Wj
′ ∈⊕ C} of components. Alternatively, the set
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δ(C,Xi) of components is said to be the sole cause of the valuation of C with respect to

Xi.

Intuitively, if a component is in δ(C,Xi), then the valuation of C with respect to

Xi can never be improved without replacing it with another component having a better

valuation with respect to Xi. Moreover, note that if δ(C,Xi) = {W1
′ . . .Wk

′} then

VC⊖W1
′⊖...⊖Wk

′(Xi) ≻i VC(Xi). Hence, improving the valuation VWj
′(Xi) for each Wj

′ ∈

δ(C,Xi) improves C’s valuation of Xi as well (provided there is at least one other

component W ∈⊕ C such that VW (Xi) ≻ VC(Xi)). In terms of Definition 35, δ(C,Xi)

represents the set of components in C that have the worst possible valuation with respect

to Xi. Example 14 illustrates this concept.

Example 14. Consider the composition C1 = W1 ⊕W2 with valuation VC1
= 〈pL, aL〉

in Example 13. C1 is solely dependent on W1 with respect to A and on W2 with respect

to P , i.e., δ(C, P ) = {W2} and δ(C,A) = {W1}. This means that the poor availability

of C1 is due to the presence of component W1, and also that if W1 can be replaced in C1

with a component having higher availability, then C1 would have higher availability.

We next describe an algorithm that uses the above notion of sole dependence to

compute a sequence of adaptations of C, namely C0, C1, . . . Cn such that C = C0

and VCi+1 ≻′ VCi for all 0 ≤ i < n. The key idea underlying the algorithm is that

it successively improves the preference valuation of the given composition C through

C0, C1, . . . Cn by iteratively formulating and solving specific instances of the substitu-

tion problem. Rather than considering all possible subsets of WC to substitute, this

algorithm chooses a specific subset of WC at each step, such that adaptations with re-

spect to the relatively more important attributes are considered ahead of others, i.e., if

Xi � Xj then the algorithm explores adaptations that are likely to have a better valu-

ation of Xi prior to exploring adaptations that are likely to have a better valuation of

Xj.
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Algorithm 7 AttributeAdapt(C, ≻′, Xi, M)

1: S = {Wj | VWj
(Xi) = VC(Xi) ∧Wj ∈⊕ C}

2: Substitute S in C: ψ = {C ′ | C ′ ∈ PrefSub(C, S)}
3: Pick only the adaptations that are preferred to C:
θ = {C ′ | C ′ ∈ ψ ∧ VC′ ≻′ VC}

4: if (θ = ∅):
5: if (i 6= m): AttributeAdapt(C, ≻′, Xi+1, M)
6: else: return
7: else:
8: Select and Output C ′ ∈ θ
9: AttributeAdapt(C ′, ≻′, Xi, M)

6.4.3 A Sound Adaptation Algorithm

In order to identify adaptations of any Ci that are likely to have a better valuation

for an attribute Xj , AttributeAdapt formulates an instance of the service substitution

problem that substitutes the set δ(Ci, Xj) of components in Ci. The rationale behind

choosing δ(Ci, Xj) as the set of components to substitute is that these components are

the sole cause of the poor valuation of Ci with respect to Xj , i.e., if all the components in

δ(Ci, Xj) are substituted to produce an adaptation Ci+1 with components having better

valuations for Xj, then VCi+1(Xj) ≻′ VCi(Xj) (provided there are other components in

Ci besides those in δ(Ci, Xj)). Furthermore, the algorithm produces adaptations by

seeking to substitute components δ(Ci, Xj) in Ci iteratively until there exist no more

preferred adaptations, and then repeats the same with respect to all attributes in X , in

the order of their relative importance.

Let M = (X1, X2, . . .Xm) be an ordering of X such thatXj+1 6� Xj for all 0 < j < m.

For each attribute Xj in the order M , we consider adapting Ci by substituting the

components δ(Ci, Xj) in Ci (Line 1) using a sound and complete multiple substitution

algorithm (such as the one given in [Santhanam et al., 2009b]; PrefSub in Line 2). Note

that although the substitution algorithm PrefSub may return many compositions (ψ),

each of which is an adaptation of Ci, not all of them may be more preferred compared to
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C. Hence, among the set (ψ) of all compositions returned by the substitution algorithm,

we select only those that are strictly preferred to Ci (θ in Line 3). AttributeAdapt

then chooses one of them arbitrarily, say Ci+1 ∈ θ, and outputs it to the user (Line 8)

as a (more) preferred adaptation of C (than Ci). Similarly, the algorithm attempts

to produce a sequence Ci+2, Ci+3, . . . of compositions by repeating (Line 9) the same

procedure (i.e., substituting δ(Ci+k, Xj) in Ci+k for all k > 1) such that VCi+k ≻′ VCi+k−1

for all k > 1. This iteration is continued until the substitution of δ(Ci, Xj) in Ci ceases

to improve the preference valuation of Ci, i.e., θ = ∅ (Line 4) or ∀C ′ ∈ ψ : VC′ 6≻′ VCi.

The algorithm then proceeds to the next attribute Xj+1 in the ordering M and repeats

the same procedure (Line 5). The algorithm terminates when all the attributes in the

order M have been considered (Line 6).

We next study some properties of AttributeAdapt. In particular, we would like to

investigate if any adaptation returned to the user by the algorithm would be preferred

(with respect to the user’s updated preferences) to the original composition (sound-

ness), and whether the user would be provided with all the preferred adaptations by the

algorithm (completeness).

6.4.4 Properties of AttributeAdapt

Proposition 19 (Termination). Given a composition C, ≻′, R′ and a substitution algo-

rithm PrefSub that terminates in a finite number of steps, AttributeAdapt terminates

in a finite number of steps.

Proof. The only steps in which AttributeAdapt recurses are Lines 5 and 9. The recur-

sion at Line 9 occurs whenever there exists a preferred adaptation C ′ to C (VC′ ≻′ VC)

that has been obtained in the current iteration by substituting δ(C,Xi) in C. This

recursion then invokes the algorithm with C ′, all other parameters being the same. Be-

cause there are only a finite number of possible compositions (the size of the repository
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is finite), and since ≻′ is an irreflexive preference relation, the recursion at Line 9 must

terminate in finite steps. The recursion at Line 5 iterates the algorithm for each Xi ∈ X

in the order determined by M . Since X (number of non-functional attributes) is finite,

this recursion is invoked a finite number of times.

Note that although there are two recursive calls, (a) they are mutually exclusive; and

(b) the recursion of Line 9 for a single Xi completes entirely within each recursion of

Line 5 corresponding to that Xi. Hence, the algorithm terminates in a finite number of

steps.

Proposition 20 (Soundness). Given a composition C, ≻′, R′ and a sound substitution

algorithm PrefSub, AttributeAdapt is sound, i.e., if a composition C ′ 6= C is output

by the algorithm, then VC′ ≻′ VC and C ′ |= ϕ.

Proof. From Lines 3 and 8, any composition C ′ (∈ θ) output by AttributeAdapt (in

Line 8) is such that VC′ ≻′ VC . Moreover, C ′ ∈ θ ⇒ C ′ ∈ ψ as per Lines 2 − 3, which

in turn implies that C ′ |= ϕ under the assumption that PrefSub is a sound substitution

algorithm. Hence, AttributeAdapt is sound.

Proposition 21. AttributeAdapt is not complete.

Proof. Example 15 (see below) provides a counter example to the completeness of

AttributeAdapt, where there exists a preferred adaptation C ′ 6= C to C, but

AttributeAdapt fails to find it.

Example 15. Consider an adaptation problem where X = {X1, X2}, C = W1⊕ . . .⊕W5

(i.e., WC = {W1 . . .W5}), δ(C,X1) = {W1,W2} and δ(C,X2) = {W3,W4}. Suppose

that there exist W ′
1,W

′
2 . . .W

′
5 ∈ R′ such that each W ′

i can functionally substitute Wi

in C, however there are some compatibility issues among the components such that the

only functionally feasible adaptation to C is C ′ = W ′
1 ⊕ W ′

2 ⊕ W ′
3 ⊕ W4 ⊕ W ′

5 and

VC′ ≻′ VC. However, AttributeAdapt considers only the following sets to substitute
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Algorithm 8 ExhaustiveAdapt(C, ≻′, M)

1: for each S ∈ P(WC) do
2: for each Xi ∈ X do
3: if (S ⊇ δi):
4: Substitute S in C: ψ = {C ′ | C ′ ∈ PrefSub(C, S)}
5: Pick only adaptations that are preferred to C:

θ = {C ′ | C ′ ∈ ψ ∧ VC′ ≻′ VC}
6: if (θ 6= ∅):
7: Select and Output C ′ ∈ θ
8: ExhaustiveAdapt(C ′, ≻′, M)
9: return

in C : {W1,W2} and {W3,W4}. Since both have no feasible adaptations (due to their

incompatibility), AttributeAdapt fails to find C ′, and terminates with C.

Although AttributeAdapt is computationally fast, it is not exhaustive and hence

it may terminate with no preferred adaptation even when one exists (as evident from

Example 15). We next present algorithm ExhaustiveAdapt that, in contrast to the pre-

vious algorithm, searches the space of adaptations more exhaustively and is guaranteed

to find a preferred adaptation if there exists one.

6.4.5 A Sound and Weakly Complete Algorithm

We call an algorithm that is guaranteed to identify a preferred adaptation if there

exists one, as weakly complete (see Definition 24).

ExhaustiveAdapt considers adaptations resulting from the substitution of all possi-

ble subsets of WC that include at least one of the δ(C,Xi)’s. Note that the number of

such subsets of WC considered is still less than 2|WC |. ExhaustiveAdapt eliminates from

consideration other subsets of WC to substitute in C, as substituting subsets of WC that

do not include any of the δ(C,Xi)’s cannot yield a preferred adaptation.

Proposition 22. Given a composition C, preference ≻′ and repository R′, the substi-

tution of a set S ⊆WC of components in C can possibly result in a preferred adaptation
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C ′ only if S includes at least one of the sets δ(C,Xi) such that Xi ∈ X , i.e., if C ′ was

obtained by substituting S in C, then VC′ ≻′ VC ⇒ ∃Xi ∈ X : S ⊇ δ(C,Xi).

Proof. Suppose that by contradiction, there exists a set S ⊆ WC such that ∀Xi ∈

X : S 6⊇ δ(C,Xi) and the substitution of S in C produces an adaptation C ′ with

VC′ ≻′ VC . Clearly, for each attribute Xi ∈ X , because not all components in δ(C,Xi)

were substituted in C, at least one of the components in δ(C,Xi) is present in C ′, i.e.,

∀Xi ∈ X : ∃W ∈ δ(C,Xi) : W ∈⊕ C ∧ W ∈⊕ C ′. Because δ(C,Xi) represents the

worst valuation among the valuations of all components in C with respect to Xi (by

Definition 35), it follows that ∀Xi ∈ X : ∃W ∈⊕ C ′ : VW (Xi) = VC(Xi). However,

the existence of such a component W for each Xi in C ′ implies that the valuation of

C ′ with respect to Xi can never be better than that of W with respect to Xi, i.e.,

∀Xi ∈ X : VW (Xi) = VC(Xi) ∧W ∈⊕ C ′ ⇒ VC′(Xi) 6≻′
i VW (Xi) = VC(Xi) (again, by

Definition 35). Further, (∀Xi ∈ X : VC′(Xi) 6≻
′
i VC(Xi)) ⇒ VC′ 6≻′ VC due to semantics

of ≻′ [Brafman et al., 2006]. This contradicts our assumption that VC′ ≻′ VC .

From the above proposition, it follows that the set S of components to be substituted

in C must include at least one δ(C,Xi) to produce a preferred adaptation. Based on

this, ExhaustiveAdapt enumerates and explores all possible subsets of WC except those

that do not include any of the sets δ(C,Xi). The algorithm chooses (Lines 1 − 3) all

the sets S : ∃Xi ∈ X : δ(C,Xi) ⊆ S ⊆ WC , and attempts to substitute each of them

in C (Line 4) to obtain a set θ of preferred adaptations (Line 5). For each such S,

the algorithm chooses one (if one exists), say C ′, outputs it to the user (Line 7) and

recursively calls itself in an attempt to further improve the new adaptation C ′ (Line 8).

The algorithm terminates when there are no more preferred adaptations to C ′. The

algorithm ignores all the other subsets S of WC such that ∀Xi ∈ X : S 6⊇ δ(C,Xi).
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6.4.6 Properties of ExhaustiveAdapt

Proposition 23 (Termination). Given a composition C, ≻′, R′ and a substitution algo-

rithm PrefSub that terminates in a finite number of steps, ExhaustiveAdapt terminates

in a finite number of steps.

Proof. The number of iterations over P(WC) for eachXi ∈ X is finite. The only recursive

call occurs in Line 8, and each time the recursion is on a different adaptation C ′. Since

there are only a finite number of such C ′ (due to the finite number of components in

the repository), and ≻′ is a strict partial order on the set of all such C ′s, this recursion

must terminate in a finite number of calls.

Proposition 24 (Soundness). Given a composition C, ≻′, R′ and a sound substitution

algorithm PrefSub, ExhaustiveAdapt is sound, i.e., if a composition C ′ 6= C is output

by the algorithm, then VC′ ≻′ VC and C ′ |= ϕ.

Proof. Any composition C ′ output by ExhaustiveAdapt (in Line 7) is such that VC′ ≻′

VC (Line 5), C ′ ∈ ψ (Line 4). This implies that C ′ |= ϕ (by the soundness the substitu-

tion algorithm PrefSub). Hence, ExhaustiveAdapt is sound.

Proposition 25 (Weak Completeness). ExhaustiveAdapt is weakly complete.

Proof. Suppose there exists a preferred adaptation C ′ to C (i.e., such that VC′ ≻′ VC).

By the soundness and completeness of PrefSub, it follows that C ′ can be obtained from

C by the substitution of some subset S of WC in C. Moreover, Proposition 22 states

that such a set S must satisfy the condition ∃Xi ∈ X : S ⊇ δ(C,Xi). ExhaustiveAdapt

explores all such subsets S, and therefore must find such a C ′ should one exist. Hence,

ExhaustiveAdapt is weakly complete (Definition 24).

In Example 15, while AttributeAdapt fails to find any preferred adaptation to C =

W1⊕ . . .W5, ExhaustiveAdapt does find the preferred adaptation C ′ = W ′
1⊕W

′
2⊕W

′
3⊕
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W4 ⊕W ′
5 due to the above property, by considering the set S = {W1,W2,W3,W5} for

substitution in C. Note that as a direct consequence of Proposition 25, it also follows

that if ExhaustiveAdapt does not return any preferred adaptation to C, then in fact

there is no preferred adaptation.

6.4.7 Efficiency of ExhaustiveAdapt

A blind search algorithm to compute preferred adaptations would involve considering

all possible subsets of WC to be substituted in C. In contrast, ExhaustiveAdapt omits

from consideration exactly the subsets S of WC that do not contain any of the δ(C,Xi)’s

entirely, i.e., it does not consider S ⊆ WC : ∀Xi ∈ X : δ(C,Xi) 6⊆ S. In Example 15, for

instance, the sets S omitted by ExhaustiveAdapt are {W1,W3}, {W1,W4}, {W2,W3},

{W2,W4}, {W1,W3,W5}, {W1,W4,W5}, {W2,W3,W5} and {W2,W4,W5} (note that

adding even one element to any of these sets makes them eligible for consideration by

ExhaustiveAdapt). The worst case for ExhaustiveAdapt arises when each δ(C,Xi)

constitutes a unique component W ∈ WC (i.e., |X | = |WC | and ∀Xi ∈ X : ∃Wj ∈ WC :

δ(C,Xi) = {Wj}). In this case, each of the 2|WC | sets are explored by ExhaustiveAdapt.

The advantage of using ExhaustiveAdapt over the blind search can be measured by

counting the number of subsets of WC that are explored by the blind search but omitted

by ExhaustiveAdapt. For simplicity of discussion, let us consider the difference between

the number of subsets explored by ExhaustiveAdapt and the brute force approach

when all the δ(C,Xi)’s are disjoint. The number of such subsets S of WC such that

∀Xi : S 6⊇ δi, i.e., those subsets that do not contain any of the δi’s is obtained as follows.

Let S ⊆WC be a set omitted from consideration by ExhaustiveAdapt. S can then be

partitioned into elements belonging to WC−∪iδi, those belonging to δ1, those belonging

to δ2 and so on because the sets WC − ∪iδi, δ1, δ2 . . . δm are pairwise disjoint (see

Figure 6.7). That is, the sets S that are omitted from consideration by ExhaustiveAdapt

are precisely those that can be constructed from various combinations of its partitions
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S ∩ (WC −∪iδi), S ∩ δ1, S ∩ δ2 . . . S ∩ δm such that:

a) S 6= ∅

b) S can contain any subset of WC − ∪iδi

c) For each δi, S can contain any subset of δi, except δi

Figure 6.7 Partitions of S ⊆ C excluding all δis for m = 3.

The number of ways of constructing the partition S∩(WC−∪iδi) is 2(|WC |−
∑

i |δi|) and

that for the partition S ∩ δi is 2|δi|−1 (for each Xi ∈ X ). The total number of subsets S

that are omitted by ExhaustiveAdapt is therefore 2(|WC |−
∑

i |δi|)×
∏

i (2
|δi| − 1)− 1 (the

last term excludes the possibility where S = ∅). Hence, the number of sets explored by

ExhaustiveAdapt is 2|WC | − 2(|WC |−
∑

i |δi|) ×
∏

i (2
|δi| − 1)− 1. This is a tight bound for

the case when all the δis are pairwise disjoint, and it is an upper bound when the δis

overlap. Figure 6.8 shows a 3-dimensional plot of this function. The plot shows that

ExhaustiveAdapt explores considerably lesser number of subsets ofWC to be substituted

in C compared to blind search, to produce at least one preferred adaptation.

6.4.8 Summary and Discussion

Among functionally feasible compositions in service oriented applications, users often

prefer some compositions over the others based on their non-functional attributes such as

performance, security and cost. Service oriented architectures often admit changes in the

user preferences over non-functional attributes of the deployed services and/or updates
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Figure 6.8 Number of subsets S ⊆ WC explored by ExhaustiveAdapt

(z-axis) as a function of m (number of δis; the x-axis) and d
(size of each δi; the y-axis). The plot is shown for c = 10 (num-
ber of components in WC). We observed similar trends for plots
for c = 20, 30 . . . 100.

to the repository of available components. In the face of such changes, it is desirable to

obtain and re-deploy a composition with the same functionality that is more preferred

with respect to the changes.

We addressed the problem of automatically adapting a given composition when (a)

there are changes to the user preferences over non-functional attributes and/or (b) new

components are added to the repository of available components. We did not consider

adaptation in response to changes involving deletion of components from the reposi-

tory, as identifying preferred adaptations in such a case reduces to identifying preferred

substitutions [Santhanam et al., 2009b]. We provided two algorithms that produce a se-

quence of increasingly preferred adaptations with time. Our algorithms take advantage

of existing work on finding preferred substitutions to components in a composition, and

can work with any substitution algorithm or preference formalism. Our algorithms do

not consider changes in the functional requirements of a composition. However, they

can be used in conjunction with any functional service adaption algorithm.

Our algorithms are sound and satisfy the anytime property: they produce a sequence

of adaptations over time, such that each new adaptation in the sequence is strictly
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preferred to its predecessors. The anytime property is especially useful in dynamic

service oriented environments, as newer, more preferred adaptations generated by the

algorithm can be re-deployed as and when they are computed by the algorithms without

affecting the business continuity of the service. While the first algorithm we presented

explores ways to iteratively improve the valuation of the composition with respect to

the relative importance order of attributes and is computationally faster, the second

algorithm is computationally more intensive but is guaranteed to produce at least one

preferred adaptation, if one exists. A key element of our algorithms is the preference

based comparison of alternatives (valuations of compositions), which can be handled

efficiently for a large class of input preferences as demonstrated in [Santhanam et al.,

2010b, Santhanam et al., 2010a].

In future, we plan to implement the algorithms in an existing service composition

system such as MoSCoE [Pathak et al., 2006a] and investigate the performance of our

algorithms in practice. We also plan to identify the precise computational complexity

class for the problem of finding preferred adaptation in the face of change in preferences

and the repository.

6.5 Discussion

Although throughout this chapter we have used TCP-nets to represent preferences,

the formal methods and algorithms developed for composition, substitution and adap-

tation of Web services developed here can be used along with any other preference

formalism. In particular, we note that the unconditional preference language as well as

the efficient dominance testing techniques developed in Chapter 3 and Chapter 4 (for

compositional systems) can be used along with the algorithms developed in this chapter

to identify the preferred Web service compositions, substitutions and adaptations.

In addition, we also note that the algorithms for identifying preferred substitutions
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and adaptations that we developed in this chapter for composite Web services can also

be applied to other compositional systems. For example, in AI planning, a pre-compiled

preferred plan can be altered (using the adaptation algorithm) when the agent’s prefer-

ences change suddenly.
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CHAPTER 7. Conclusion

Representing and reasoning with preferences is a problem of significant importance

and interest in AI. Reasoning with qualitative preferences over a set of alternatives that

are described by multiple attributes is known to be hard in general. In this thesis, we

have studied three related problems that arise in the context of reasoning with qualitative

preferences.

The first problem we address in this thesis is dominance testing, i.e., determining

whether an outcome is preferred to another with respect to a set of preferences. This

problem is is computationally hard for TCP-nets and other well known preference lan-

guages. This thesis provides formal methods for performing dominance testing efficiently

in many practical cases. Secondly, we take up preference reasoning for compositional

systems, where alternatives over which preferences are computed represent collections

of objects rather than simple objects. We develop formalisms to reason with preferences

over collections of objects based on the preferences over the attributes describing the

objects, and provide algorithms to compute the most preferred collections. This thesis

also addresses some problems of preference reasoning that arise in a service oriented soft-

ware environment, where distributed Web services are assembled to build more complex

compositions. Given preferences over the attributes of the Web services and some min-

imum requirements to be satisfied by any compositions, this thesis provides algorithms

for identifying preferred service compositions.

Section 7.1 summarizes the primary contributions of this thesis, and Section 7.2

concludes the chapter with future work.
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7.1 Contributions

The primary contributions of this thesis are as follows.

1. Efficient Dominance Testing: We provided techniques for efficient dominance

testing with TCP-nets. In particular, we explored two ways of achieving efficient

dominance testing:

a) We first presented a preference language that allows expression of uncondi-

tional intra-variable and relative importance preferences and present a poly-

nomial time dominance testing approach for this language.

b) We explored a novel approach to dominance testing for TCP-nets in general

that leverages the state-of-the-art techniques in model checking [Clarke et al.,

1986, Queille and Sifakis, 1982, Cimatti et al., 2002]. To the best of our

knowledge, this is the first practical solution to this problem. Our approach

relies on a reduction of the dominance testing problem to reachability analysis

in a graph of outcomes.

2. Representing and Reasoning with Preferences for Compositional Sys-

tems: We developed a preference formalism for compositional systems that al-

lows users to specify preferences in terms of intra-attribute and relative importance

preferences over a set of attributes, and includes mechanisms for:

a) Computing the valuation of a composition: With respect to each attribute,

we defined a generic aggregation function to compute the valuation of a com-

position as a function of the valuations of its components. We also presented

a strict partial order preference relation for comparing two compositions with

respect to their aggregated valuations of each attribute.
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b) Comparing the valuations of compositions: We introduced a dominance re-

lation that compares compositions (in terms of their aggregated valuations)

with respect to the stated preferences, and established some of its key prop-

erties. In particular, we showed that this relation is a strict partial order

whenever the intra-attribute preferences are strict partial orders and relative

importance preference is an interval order.

3. Algorithms for Identifying Preferred Compositions: We developed a suite

of algorithms for compositional systems that identify the set, or subset of the most

preferred composition(s) with respect to the user preferences. In particular, we

showed that under certain conditions, the algorithms are guaranteed to return only

(sound), all (complete), or at least one (weakly complete) of the most preferred

compositions. The algorithms we developed fall into two classes:

a) those that first compute the set of all feasible compositions using a functional

composition algorithm as a black box, and then proceed to find the most

preferred among them using the preference relations developed in (1); and

b) an algorithm that interleaves at each step the execution of a functional com-

position algorithm and the ordering of partial solutions with respect to user

preferences. It requires the functional composition algorithm to be able to

construct a composition satisfying the functional requirement incrementally,

i.e., by iteratively extending partial compositions with additional components.

We analyzed some key properties of the algorithms that yield specific conditions

on the structure of preferences, under which the algorithms produce only/at least

one/all of the most preferred solutions.

4. Experimental Comparison of Composition Algorithms: We presented

results of experiments that compare performance of the above algorithms for com-
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puting the most preferred compositions on a set of simulated composition problem

instances. The results demonstrate the feasibility of our approach in practice, and

compare our algorithms with respect to the quality of (number of good or most

preferred) solutions produced by the algorithms and their performance (running

time) and efficiency (the number of times they invoke the functional composition

algorithm). Based on an analysis of the experimental results, we also identified

key theoretical properties of the dominance relation directly as a function of the

user preferences, which were unknown apriori.

5. Application to Web Services: Finally, we applied the above techniques to

the domain of Web services and provided a set of algorithms for the composition,

substitution and adaptation of Web services with respect to the user’s preferences

over the non-functional attributes and a given repository of component services.

The algorithms are tailored to suit the needs of service-oriented architectures, but

similar techniques can be applied in compositional systems other than Web services

as well, such as AI planning, team formation, etc.

Although our approach to efficient dominance testing focuses on acyclic CP-nets and

TCP-nets, our techniques for efficient dominance testing have a broader applicability.

They can be applied to any preference language as long as the semantics of the preference

language is given in terms of the satisfiability of graph properties (including GCP-nets,

cyclic CP-nets and the language due to Wilson).

The preference formalism we developed for assembling compositional systems is

generic in the sense that one can use any aggregation function that appropriately repre-

sents the valuation of the composition as a function of the valuations of its constituents.

In particular, we showed examples of aggregation functions that compute the summa-

tion (numeric), the minimum/maximum valuation (totally ordered), or the set of worst

valuations (partially ordered) of the constituents of a composition. Our formalism also
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provides flexibility in choosing the preference relation that compares sets of valuations

of two compositions, so that any strict partial order preference relation can be used.

All our algorithms for assembling compositions are completely independent of various

aspects of the preference formalism, namely, the choice of aggregation functions, the

preference relation used to compare aggregated valuations over a single attribute, and

the dominance relation used to compare compositions over all attributes, except that the

preference relations are strict partial orders. The theoretical and experimental results

provide precise conditions under which the algorithms produce only/at least one/all of

the most preferred solutions. This enables the user to choose an algorithm of his/her

choice for particular problem instance, depending on the quality of solutions that is

needed. In addition, our analysis also allows the user to tradeoff the quality of solutions

produced against performance and efficiency or vice-versa.

Application of the above techniques for the development and maintenance of service-

oriented software systems poses some additional challenges. For example, the algorithm

for identifying the most preferred Web service composition may need to deal with un-

known valuations of some of attributes of some of the components in the repository. We

showed how the developed preference formalism can be used to address problems related

to the lifecycle maintenance of composite Web services in a service-oriented environment,

namely, identifying preferred substitutions and adaptations of composite services after

identifying and deploying a composite Web service.

7.2 Future Work

Our work opens up the following directions for future research.

1. Efficient Dominance Testing: Preference networks are popular as graphical

preference representation tool, but their applicability in practice is restricted by

the fact that dominance testing for TCP-nets is PSPACE-complete. In this thesis,
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we considered the unconditional fragment of the conditional preference language

encoded by the TCP-net family, and defined a dominance relation for this fragment

that can be computed in polynomial time. In another approach, we employed

the state-of-the-art model checker NuSMV for computing dominance for TCP-net

preferences. There are at least two possible directions for future work.

a) It would be useful to identify other fragments of the TCP-net language and

corresponding dominance relations that can be efficiently computed, such as

those that may include conditional preferences but restrict the structure of

the conditional dependencies or relative importance preferences.

b) We would like to implement our solution for efficient dominance testing using

NuSMV model checker, and perform experiments to determine the perfor-

mance of our approach in practice. It would be interesting to see how big of a

preference network (in terms of number of variables, dependencies, etc.) can

be handled by such an implementation in practice.

c) Model checkers other than NuSMV such as SPIN can be employed for dom-

inance testing. It would be interesting to compare the performance between

the implementations that use different model checkers.

2. Preference Formalism for Compositional Systems: We have already seen

that our preference formalism is generic and flexible in terms of the choice of

aggregation functions to compute the valuation of a composition in terms of the

valuations of its components, as well as in the overall dominance relation used

to compare different compositions. It would be interesting to see if aggregation

functions that may need to be employed for other applications will still work

with the rest of the formalism as is. The same applies to preference relations

for comparing aggregated preference valuations as well.
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3. Dominance: It would be interesting to explore alternative notions of dominance

that preserve the rationality of choice, by requiring a different set of properties

(e.g., those that satisfy negative-transitivity instead of transitivity). The impact

of such a dominance relation on the preference formalism and algorithms, and the

semantic relationship between those and the dominance relation proposed in this

thesis will be of interest.

4. Experiments: In evaluating the performance of our composition algorithms for

compositional systems, we made use of the growth process of a uniform recursive

tree data structure to simulate the searching of a functionally feasible composition.

Based on the nature of specific target applications, it would be useful to consider

other possible methods to generate the search space for composition.

5. Application to Web Services: We would like to implement our composition,

substitution and adaptation algorithms for composite Web services in a Web ser-

vice composition framework such as MoSCoE, in conjunction with various types

of functional composition algorithms.

6. Other Applications: We would like to extend the application of our preference

formalism and algorithms to other application domains such as preference-based

planning, team formation, etc.
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